Skip to main content
Log in

Correction of flexible thoracic scoliosis below 65 degrees—A radiological comparison of anterior versus posterior segmental instrumentation applied to similar curves

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Direct comparison of the correction of scoliosis achieved by different surgical methods is usually limited by the heterogeneity of the patients analyzed (their age, curve pattern, curve magnitude, etc.). The hypothesis is that an analysis of comparable scoliotic curves treated by different implant systems could detect subtle differences in outcome. The objective of this study was therefore: (1) to measure the 3D radiological parameters of scoliotic deformity and to quantify their postoperative changes, and (2) to compare the radiographic results achieved with one anterior and one posterior instrumentation methods applied to similar curves but representing different mechanisms of correction. Material and methods: The clinical notes and radiographs of 46 patients operated on for adolescent idiopathic scoliosis were reviewed. The inclusion criteria consisted of: a single thoracic curve, right convex, a frontal Cobb angle minimum of 45° and a maximum of 65°, flexibility on a lateral bending test of more than 30%, and a Risser test value of between 1 and 4. The operative procedures were: Cotrel-Dubousset instrumentation (CDI) for 25 patients (the CD group) and correction by anterior instrumentation (Pouliquen plate) for 21 patients (the ANT group). Preoperative and postoperative long cassette standing antero-posterior and lateral radiographs were examined. The frontal and sagittal thoracic Cobb angle, apical vertebra transposition (AVT), apical vertebra rotation (AVR), lowest instrumented vertebra (LIV) tilt, C7 vertebra shift and rib cage shift (RCS) were all compared. A computed reconstruction was produced with Rachis-91 software. Vertebral axial rotation angle was evaluated throughout the spine. Results: Postoperative assessment revealed a mean correction of the frontal Cobb angle of 37.0° for the CD group and 41.0° for the ANT group. The AVT operative correction was 45.8 and 42.7 mm, respectively, and AVR correction was 1.8 and 12.6°, respectively. The postoperative change of the sagittal Th4–Th12 Cobb angle was not significant for any method but it was significant (P=0.05) for the CD group if the curves were divided preoperatively into hypokyphotic and normokyphotic subgroups and then analyzed separately. Computed assessment demonstrated a correction of segmental axial rotation of more than 50% in the main thoracic curve in the ANT group, significantly more than that in the CD group (P<0.001). Conclusions: Anterior instrumentation provided better correction of the vertebral axial rotation and of the rib hump. CD instrumentation was more powerful in translation and more specifically addressed the sagittal plane: the postoperative thoracic kyphosis angle increased in the hypokyphotic curves and slightly decreased in the normokyphotic curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Betz RR, Harms J, Clements DH III et al (1999) Comparison of anterior and posterior instrumentation for correction of adolescent thoracic idiopathic scoliosis. Spine 24:225–239

    Article  PubMed  Google Scholar 

  2. Bridwell KH, Betz R, Capelli AM et al (1990) Sagittal plane analysis in idiopathic scoliosis patients treated with Cotrel-Dubousset instrumentation. Spine 15:921–926

    PubMed  Google Scholar 

  3. Bridwell KH, McAllister JW, Betz RR et al (1991) Coronal decompensation produced by Cotrel-Dubousset “derotation” maneuver for idiopathic right thoracic scoliosis. Spine 16:769–777

    PubMed  Google Scholar 

  4. Brown RH, Burstein AH, Nash CL et al (1976) Spinal analysis using a three-dimensional radiographic technique. J Biomech 9:355–365

    Article  PubMed  Google Scholar 

  5. Cobb JR (1948) Outline for the study of scoliosis. Course Lectures American Academic of Orthopaedics, p 261

  6. Cotrel Y, Dubousset J (1984) Nouvelle technique d’ostéosynthèse rachidienne segmentaire par voie postérieure. Rev Chir Orthop 70:489–494

    PubMed  Google Scholar 

  7. Cotrel Y, Dubousset J, Guillaumat M (1988) New universal instrumentation in spinal surgery. Clin Orthop Rel Res 227:10–23

    Google Scholar 

  8. D’Andrea LP, Betz RR, Lenke LG et al (2000) The effect of continued posterior spinal growth on sagittal contour in patients treated by anterior instrumentation for idiopathic scoliosis. Spine 25:813–818

    Article  PubMed  Google Scholar 

  9. D’Andrea LP, Betz RR, Lenke LG et al (2000) Do radiographic parameters correlate with clinical outcomes in adolescent idiopathic scoliosis?. Spine 25:1795–1802

    Article  PubMed  Google Scholar 

  10. DeSmet AA (1985) Radiology of spinal curvature. CV Mosby Company, St Louis, pp 23–108

    Google Scholar 

  11. Dubousset J, Herring JA, Shufflebarger H (1989) The crankshaft phenomenon. J Pediatr Orthop 5:541–550

    Google Scholar 

  12. Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. In: Weinstein SL (ed) The pediatric spine. Raven Press, New York, pp 479–496

    Google Scholar 

  13. Graf H, Hecquet J, Dubousset J (1983) Approche tridimensionnelle des déformations rachidiennes. Rev Chir Orthop 69:407–416

    PubMed  Google Scholar 

  14. Halm HF, Liljenqvist U, Niemeyer T et al (1998) Halm-Zielke instrumentation for primary stable anterior scoliosis surgery: operative technique and 2-year results in ten consecutive adolescent idiopathic scoliosis patients within a prospective clinical trial. Eur Spine J 7:429–434

    Article  PubMed  Google Scholar 

  15. Hecquet J, Rachis TM (1998) Manuel opératoire. Paris

  16. Hindmarsh J, Larsson J, Mattsson P (1989) Analysis of changes in the scoliotic spine using a three-dimensional radiographic technique. J Biomech 13:279–290

    Article  Google Scholar 

  17. Hopf CG, Eysel P, Dubousset J (1997) Operative treatment of scoliosis with Cotrel-Dubousset-Hopf instrumentation New anterior spinal device. Spine 22:618–627

    Article  PubMed  Google Scholar 

  18. King HA, Moe JH, Bradford DS et al (1983) The selection of fusion level in thoracic idiopathic scoliosis. J Bone Joint Surg 65A:1302–1313

    PubMed  Google Scholar 

  19. Lonstein JE, Carlson JM (1984) The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg 66A:1061–1071

    PubMed  Google Scholar 

  20. Lowe T, Peters JD (1993) Anterior spinal fusion with Zielke instrumentation for idiopathic scoliosis. Spine 18:423–426

    PubMed  Google Scholar 

  21. Majd ME, Castro FP, Holt RT (2000) Anterior fusion for idiopathic scoliosis. Spine 25:696–702

    Article  PubMed  Google Scholar 

  22. Perdriolle R (1979) La scoliose. Son étude tridimensionnelle. Maloine SA Éditeur, Paris

  23. Picetti G, Blackman RG, O’Neal K et al (1998) Anterior endoscopic correction and fusion of scoliosis. Othopedics 21:1285–1287

    Google Scholar 

  24. Pouliquen JC, Rigault P, Padovani JP et al (1984) Redressement par plaque des scolioses Résultats de 99 cas vus avec recul. Rev Chir Orthop 70:93–108

    PubMed  Google Scholar 

  25. Risser JC (1958) The iliac apophysis: an invaluable sign in the management of scoliosis. Clin Orthop 11:111–119

    PubMed  Google Scholar 

  26. Shufflebarger HL (1994) Theory and mechanisms of posterior deformation spinal systems. In: Weinstein SL (ed) The pediatric spine. Raven Press, New York, pp 1515–1543

    Google Scholar 

  27. Sweet FA, Lenke LG, Bridwell KH et al (2001) Prospective radiographic and clinical outcomes and complications of single solid rod instrumented anterior spinal fusion in adolescent idiopathic scoliosis. Spine 26:1956–1965

    Article  PubMed  Google Scholar 

  28. Turi M, Johnston CE II, Richards BS (1993) Anterior correction of idiopathic scoliosis using TSRH instrumentation. Spine 18:417–422

    PubMed  Google Scholar 

  29. Wattenbarger JM, Richards BS, Herring JA (2000) Comparison of single-rod instrumentation with double-rod instrumentation in adolescent idiopathic scoliosis. Spine 25:1680–1688

    Article  PubMed  Google Scholar 

  30. Willers U, Transfeldt EE, Hedlund R (1996) The segmental effect of Cotrel-Dubousset instrumentation on vertebral rotation, rib hump and the thoracic cage in idiopathic scoliosis. Eur Spine J 5:387–393

    Article  PubMed  Google Scholar 

  31. Zielke K (1982) Ventrale derotationspondylodese bahandung sergebnisse bei idiopatischen lumbalskoliossen. Z Orthop 120:320–329

    PubMed  Google Scholar 

Download references

Acknowledgements

The study was partially supported by Polish Committee for Scientific Research, grant KBN 4PO5E 07212. No other benefits in any form have been received or will be received related directly or indirectly to the subject of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Kotwicki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotwicki, T., Dubousset, J. & Padovani, JP. Correction of flexible thoracic scoliosis below 65 degrees—A radiological comparison of anterior versus posterior segmental instrumentation applied to similar curves. Eur Spine J 15, 972–981 (2006). https://doi.org/10.1007/s00586-005-0991-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-005-0991-6

Keywords

Navigation