Skip to main content
Log in

Iron-related parameters in Spanish mares during pregnancy

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

During pregnancy, metabolic adjustments occur in the mare to preserve iron stores in order to have adequate amounts for the growth and development of the equine fetus. The aim of this study was to analyze the evolution of hematocrit, iron, and ferritin in Spanish Purebred mares during pregnancy. A total of 31 Spanish broodmares aged 4–17 years old were studied during three similar periods of pregnancy (I, II, and III). Hematocrit (packed cell volume, PCV) was determined by microhematocrit and iron and ferritin concentrations were analyzed using spectrophotometry and turbidimetric methods, respectively. Pregnancy in the Spanish mare was characterized by a progressive increase in PCV and serum iron and ferritin concentrations. The physiological state of pregnancy significantly modifies iron status in these animals. In comparison with the first period, the increase in iron stores during the second and third periods indicates a positive iron balance, suggesting that the fetus can tolerate iron levels compatible with the mothers during the entire fetal development process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Airman DH, Harvey JW, Asquith RL et al (1991) Hematologic development in foals receiving intravenous iron supplementation. J Equine Vet Sci 11:103–107

    Article  Google Scholar 

  • Akhtar MS, Farooq AA, Mushtaq M (2009) Serum trace minerals variation during pre and post-partum period in nili-ravi buffaloes. J Anim Plant Sci 19:182–184

    Google Scholar 

  • Allen LH (2000) Anemia and iron deficiency: effects on pregnancy outcome. Am J Clin Nutr 71:1280–1284

    Google Scholar 

  • Arroyo F, Escribano, MB, Agüera EI et al (2003) Comparative hematological response in young and adults Andalusian horses performing on the treadmill. Proceedings of American Physiological Society and XXXII Congreso de la Sociedad Española de Ciencias fisiológicas. Tenerife, Spain; pp 167

  • Arroyo F, Escribano MB, Castejón FM et al (2007) Estudio del hemograma en caballos de Pura Raza Española ejercitados en cinta rodante. Rev San Fuerzas Armadas 63:174–175

    Google Scholar 

  • Asif N, Hassa K, Madmud S et al (2007) Comparison of serum ferritin levels in the three trimesters of pregnancy and their correlation with increasing gravidity. Int J Pathol 5:26–30

    Google Scholar 

  • Azab ME, Maksoud HA (1999) Changes in some hematological and biochemical parameters during prepartum and postpartum periods in female Baladi goats. Small Rum Res 34:77–85

    Article  Google Scholar 

  • Baucus KL, Ralston SL, Rich G et al (1987) The effect of dietary copper and zinc supplementation on composition of mare’s milk. Proceedings of 10th Equine Nutrition Physiology Symposium; pp 179

  • Beard JL, Connor JR (2003) Iron status and neural functioning. Ann Rev Nutr 23:41–58

    Article  CAS  Google Scholar 

  • Borges AS, Divers TJ, Stokol T et al (2007) Serum iron and plasma fibrinogen concentrations as indicators of systemic inflammatory diseases in horses. J Vet Intern Med 21:489–494

    Article  PubMed  Google Scholar 

  • Bothwell TH (2000) Iron requirements during pregnancy and strategies to meet them. Am J Clin Nutr 72:257–264

    Google Scholar 

  • Calvo JJ, Allue JR, Escudero A et al (1989) Plasma ferritin of sows during pregnancy and lactation. Cornell Vet 79:273–282

    PubMed  CAS  Google Scholar 

  • Detlef C (1985) Untersuchungen uber das rote blutbild und der eisenversorgunganzei genden parameter bei stuten und deren fohlen im peripartalen abschnitt unter besonderer berucksichtigung einer eisensubstitution. Inaugural Dissertation zur Erlangung des Doktorgrades bei dem Fachbereich Veterinarmedizin und Tierzucht der Justus-Liebig-Universitat zu Gieben

  • Eteng MG, Ekmer AO, Eyong EU et al (2010) Biochemical and haematological changes in pregnant malaria patients and pregnant non-malaria women. Sci Res Essays 5:1009–1013

    Google Scholar 

  • Frietsch G, Weigand E, Prüstel N (1991) The postnatal iron status of trotter foals. Berl Munch Tierarztl Wochensch 104:307–308

    CAS  Google Scholar 

  • Furugouri K, Miyata Y, Shijimaya K (1982) Ferritin in blood serum of dairy cows. J Dairy Sci 65:1529–1534

    Article  PubMed  CAS  Google Scholar 

  • Gambling L, Dunford S, Wallace DI et al (2003) Iron deficiency during pregnancy affects post-natal blood pressure in the rat. J Physiol 552:603–610

    Article  PubMed  CAS  Google Scholar 

  • Gambling L, Andersen HS, Czopek A et al (2004) Effect of timing of iron supplementation on maternal and neonatal growth and iron status of iron-deficient pregnant rats. J Physiol 561:195–203

    Article  PubMed  CAS  Google Scholar 

  • Grace ND, Pearce SG, Firth EC et al (1999) Concentrations of macro- and micro-elements in the milk of pasture-fed thoroughbred mares. Aust Vet J 77:177–180

    Article  PubMed  CAS  Google Scholar 

  • Hafez SA, Freeman LE, Caceci T et al (2007) Study of the vasculature of the caprine reproductive organs using the tissue clearing technique, with special reference to the angioarchitecture of the utero ovarian vessels and the adaptation of the ovarian and/or vaginal arteries to multiple pregnancies. Anat Rec 290:389–405

    Article  Google Scholar 

  • Hamalainen H, Hakkarainen K, Heinonen S (2003) Anemia in the first but not in the second or third trimester is a risk factor for low birth weight. Clin Nutr 22:271–275

    Article  PubMed  Google Scholar 

  • Harvey JW, Asquith RL, Sussman WA et al (1987) Serum ferritin, serum iron and erythrocyte values in foals. Am J Vet Res 48:1348–1352

    PubMed  CAS  Google Scholar 

  • Harvey JW, Asquith RL, Pate MG et al (1994) Haematological findings in pregnant, postparturient and nursing mares. Comp Haematol Int 4:25–29

    Article  Google Scholar 

  • Hyppa S, Hoyhiya M, Nevalainen M et al (2002) Effect of exercise on plasma ferritin concentrations: implications for the measurement of iron status. Equine Vet J Suppl 34:186–190

    Article  Google Scholar 

  • Inoue Y, Matsui A, Asai Y et al (2005) Effect of exercise on iron metabolism in horses. Biol Trace Elem Res 107:33–42

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic M, Llic V, Trailovi D et al (2007) The role of different iron preparations in the prevention of anemia in racing horses. Acta Vet Beogr 57:357–368

    Article  Google Scholar 

  • Kadyrov M, Schmitz C, Black S et al (2003) Pre-eclampsia and maternal anemia display reduced apoptosis and opposite invasive phenotypes of extravillous trophoblast. Placenta 24:540–548

    Article  PubMed  CAS  Google Scholar 

  • Kavazis AN, Kivipelto MS, Ott EA (2002) Supplementation of broodmares with copper, zinc, iron, manganese, cobalt, iodine, and selenium. J Equine Vet Sci 22:460–464

    Article  Google Scholar 

  • Kellon EM (2006) Iron status of hyperinsulinemic/insulin resistant horses. Proceedings of the 3rd Congress European Equine Health and Nutrition, Belgium

  • Khalafallah A, Dennis A, Bates J et al (2010) A prospective randomized, controlled trial of intravenous versus oral iron for moderate iron deficiency anemia of pregnancy. J Intern Med 268:286–295

    Article  PubMed  CAS  Google Scholar 

  • Kozat SL, Ksek NY, Yabar GZ et al (2006) Serum iron, total iron-binding capacity, unbound iron-binding capacity, transferrin saturation, serum cooper, and hematological parameters in pregnant Akkaraman ewes infected with gastro-intestinal parasites. Turk J Vet Anim Sci 30:601–604

    CAS  Google Scholar 

  • Lao TT, Tam KF, Chan LY (2000) Third trimester iron status and pregnancy outcome in non-anaemic women; pregnancy unfavourably affected by maternal iron excess. Hum Reprod 15:1843–1848

    Article  PubMed  CAS  Google Scholar 

  • Lawrence LM, Moore KJ, Hintz HF et al (1987) Acceptability of alfalfa hay treated with an organic acid preservative for horses. Can J Anim Sci 67:217

    Article  Google Scholar 

  • Levi S, Arosio P (2004) Mitochondrial ferritin. Int J Biochem Cell Biol 36:1887–1889

    Article  PubMed  CAS  Google Scholar 

  • Lewis LD (1995) Minerals for horses. In: Equine clinical nutrition: feeding and care. Williams & Wilkins. Baltimore, USA, pp 52–54

  • Ley WB, Thatcher CD, Swecker WS et al (1990) Chelated mineral supplementation in the barren mare: a preliminary trial. Equine Vet Sci 10:176–181

    Article  Google Scholar 

  • Moore CV (1961) Iron metabolism and nutrition. Harvey Lect 55:67–101

    PubMed  CAS  Google Scholar 

  • National Research Council (2007) Nutrient requirements of horses: 6th revised edition. National Academies Press, Washington

    Google Scholar 

  • Nazifi S, Rategh S (2005) Hemoglobin types and blood concentrations of hemoglobin, cooper, ceruloplasmin and iron in adult Caspian miniature horses. Rev Méd Vét 156:50–52

    CAS  Google Scholar 

  • Orino K, Hamada S, Hasimoto M et al (2006) Identification of horse anti-ferritin autoantibody. J Equine Sci 17:113–119

    Article  Google Scholar 

  • Orozco CAG, Martins CB, de Freitas FH et al (2007) Hematological values and total protein of Brasileiro de Hipismo and Breton mares during pregnancy. Ciência Rural 37:1695–1700

    Article  Google Scholar 

  • Ott EA, Asquith RL (1994) Trace mineral supplementation of broodmares. J Equine Vet Sci 14:93–101

    Article  Google Scholar 

  • Pagan JD (1998) Nutrient digestibility in horses. In: Pagan JD (ed) Advances in equine nutrition. Nottingham University Press, UK, pp 77–83

    Google Scholar 

  • Paiva A, Rondo PHC, Pagliusi RA et al (2007) Relationship between the iron status of pregnant women and their newborns. Rev de Saúde Pública 41:321–327

    Article  Google Scholar 

  • Pavelka R, Linkesch W, Kofler E (1981) Hematologic parameters and iron state in the perinatal period. Arch Gynecol Obstet 230:275–281

    CAS  Google Scholar 

  • Ramsay WNM (1994) Age-related storage of iron in the liver of horses. Vet Res Commun 18:261–268

    Article  PubMed  CAS  Google Scholar 

  • Reshstnkova OS, Buerton GJ, Teleshova OV (1995) Placental histomorphometry and morphometric diffusing capacity of the villous membrane in pregnancies complicated bymaternal iron-deficiency anemia. Am J Obstet Gynecol 173:724–727

    Article  Google Scholar 

  • Roble MG, Farfa RJ (1987) Effects of metalosates on conception rates of thoroughbred mares. Proceedings of 10th Equine Nutrition and Physiology Symposium. Ft. Collins, CO; pp 637

  • Rook JS, Braselton WE, Nachreiner RF (1997) Multielemental assay of mammary secretions and sera from periparturient mares by inductively coupled argon plasma emission spectroscopy. Am J Vet Res 58:376–378

    PubMed  CAS  Google Scholar 

  • Roth-Maier DA, Kirchgessne M, Spoerl R (1985) Iron balances of gravid and lactating sows with varying dietary iron supply. J Vet Med 32:739–751

    CAS  Google Scholar 

  • Rubio MD, Castejón FM, Gouveia JA et al (2007) Basal plasmatic parameters and response to exercise in the Pure Breed Lusitano Horse. Proceedings of 11th Jornadas Internacionais de Medicina Veterinaria. Portugal; pp. 195

  • Rubio MD, Agüera EI, Santisteban R et al (2008) Using the treadmill to normalize different physiological parameters in Teh Spanish Pure Bred Horse. Proceedings of 4th Conference of International Society for Equitation Science (ISES), Dublin, Ireland; pp. 83

  • Satué K, Domingo R (2010) Longitudinal study of peripheral concentrations of progesterone, cortisol, aldosterone and oestrone sulphate in serum of the Spanish Purebred broodmares during pregnancy. Reprod Domest Anim 45:91

    Google Scholar 

  • Satué K, Domingo R (2011) Longitudinal study of the renin angiotensin aldosterone system in purebred Spanish broodmares during pregnancy. Theriogenology 75:1185–1194

    Article  PubMed  Google Scholar 

  • Satué K, Blanco O, Muñoz A (2010) Pregnancy influences the hematological profile of Carthusian broodmares. Polish J Vet Sci 13:393–394

    Google Scholar 

  • Scholl TO (2005) Supplement women and micronutrients: addressing the gap throughout the life cycle. Am J Clin Nutr 81:1218–1222

    Google Scholar 

  • Schorr G (1988) Iron and iron-binding capacity in the serum of clinically healthy horses. Tierärz Prax 16:163–165

    CAS  Google Scholar 

  • Sibai BM, Fragieh A (1995) Maternal adaptation to pregnancy. Curr Opin Obstet Gynecol 7:420–426

    Article  PubMed  CAS  Google Scholar 

  • Smith JE, Moore K, Cipriano JE et al (1984) Serum ferritin as a measure of stored iron in horses. J Nutr 114:677–681

    PubMed  CAS  Google Scholar 

  • Tanritanir P, Dede S, Ceylan E (2009) Changes in some macro minerals and biochemical parameters in female healthy siirt hair goats before and after parturition. J Anim Vet Adv 8:530–533

    CAS  Google Scholar 

  • Thompson KJ, Fried MG, Zheng Y et al (2002) Regulation mechanisms and proposed function of ferritin translocation to cell nuclei. J Cell Sci 115:2165–2177

    PubMed  CAS  Google Scholar 

  • Ullrey DE, Ely WT, Covert RL (1974) Iron, zinc and copper in mare’s milk. J Anim Sci 38:1276–1277

    PubMed  CAS  Google Scholar 

  • Underwood EJ (1977) Trace elements in human and animal nutrition. Academic, New York, pp 13–55

    Google Scholar 

  • Upadhyaya C, Mishra S, Ajmera P et al (2004) Serum iron, copper and zinc status in maternal and cord blood. Indian J Clin Biochem 19:48–52

    Article  PubMed  CAS  Google Scholar 

  • Viteri FE, Gonzalez MD (2002) Adverse outcomes of poor micronutrient status in children and adolescents. Nutr Rev 60:77–83

    Article  Google Scholar 

  • Wheeler S (2008) Assessment and interpretation of micronutrient status during pregnancy. Proc Nutr Soc 67:437–450

    Article  PubMed  CAS  Google Scholar 

  • Wooding FB, Fowden AL (2006) Nutrient transfer across the equine placenta: correlation of structure and function. Equine Vet J 38:175–183

    Article  PubMed  CAS  Google Scholar 

  • Wooding FB, Morgan G, Fowden AL et al (2000) Separate sites and mechanisms for placental transport of calcium, iron and glucose in the equine placenta. Placenta 21:635–645

    Article  PubMed  CAS  Google Scholar 

  • Yokus B, Cakir UD (2006) Seasonal and physiological variations in serum chemistry and mineral concentrations in cattle. Biol Trace Elem Res 109:255–266

    Article  PubMed  CAS  Google Scholar 

  • Yokus B, Cakir D, Icen H et al (2010) Prepartum and postpartum serum mineral and steroid hormone concentrations in cows with dystocia. YYÜ Veteriner Fakultesi Dergisi 21:185–190

    Google Scholar 

  • Yöküs I, Deger Y, Mert H et al (2007) Serum concentration of copper, zinc, iron and cobalt and the copper/zinc ratio in horses. Biol Trace Elem Res 118:38–42

    Article  Google Scholar 

  • Zavy MT, Sharp DC, Bazer FW et al (1982) Identification of stage-specific and hormonally induced polypeptides in the uterine protein secretions of the mare during the oestrous cycle and pregnancy. J Reprod Fertil 64:199–207

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Satué.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montesinos, P., Satué, K. Iron-related parameters in Spanish mares during pregnancy. Comp Clin Pathol 22, 21–27 (2013). https://doi.org/10.1007/s00580-011-1364-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-011-1364-7

Keywords

Navigation