Skip to main content
Log in

Myocardial concentration of cardiac troponin T as an early discriminator of mechanisms of cardiac hypertrophy

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Measurement of myocardial concentration of the myofibrillar protein, cardiac troponin T (cTnT), was used as a biochemical correlate of myocardial myofibrillar volume fraction to confirm and extend results of histomorphometric studies of changes in myofibrillar density during hypertrophy. Rat models were used to study concentric cardiac hypertrophy due to pressure overload (spontaneous hypertension), eccentric cardiac hypertrophy due to volume overload (administration of minoxidil for 4 weeks), and mixed cardiac hypertrophy due to growth factor stimulation (administration of triiodothyronine for 4 weeks). Mean myocardial cTnT concentration was 583±60 μg/g wet weight tissue in 40 control rats aged 10–20 weeks. We confirmed that pressure overload increased myofibrillar density by up to 30%, whereas volume overload decreased myofibrillar density, in our study, by up to 15%. Growth factor-induced hypertrophy was confirmed to occur by a mixture of processes; while myofibrillar density had increased by 31% at 1 week, it had normalised by 4 weeks. Minoxidil-induced hypertrophy was also confirmed to occur by a mixture of the processes, with myofibrillar density first decreased by 15% at 1 week before normalising by 4 weeks. Progressive, pathological hypertrophy, as modelled with spontaneous hypertension, was confirmed to be associated with abnormal myocardial myofibrillar density. We conclude that myocardial cTnT concentration may be used as a simple and precise biomarker of myofibrillar volume density, which, assessed over time, discriminates early physiological mechanisms involving myocyte thickening from those involving myocyte elongation and may discriminate between physiological and pathological hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anversa P, Loud AV, Giacomelli F, et al (1978) Absolute morphometric study of myocardial hypertrophy in experimental hypertension. II. Ultrastructure of myocytes and interstitium. Lab Invest 38:597–609

    CAS  PubMed  Google Scholar 

  • Anversa P, Beghi C, Levicky V, et al (1982) Morphometry of right ventricular hypertrophy induced by strenuous exercise in rat. Am J Physiol 243:H856–861

    CAS  PubMed  Google Scholar 

  • Anversa P, Ricci RR, Olivetti G (1986) Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy. J Am Coll Cardiol 7:1140–1149

    CAS  PubMed  Google Scholar 

  • Barth E, Stammler G, Speiser B, et al (1992) Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol 24:669–681

    Article  CAS  PubMed  Google Scholar 

  • Campbell SE, Rakusan K, Gerdes AM (1989) Change in myocyte size distribution in aortic-constricted neonatal rats. Basic Res Cardiol 84:247–258

    CAS  Google Scholar 

  • Cittadini A, Stromer H, Katz SE, et al (1996) Differential cardiac effects of growth hormone and insulin-like growth factor-1 in the rat: a combined in vivo and in vitro evaluation. Circulation 93:800–809

    CAS  PubMed  Google Scholar 

  • Clubb FJ, Bell D, Kriseman JD, et al (1987) Myocardial cell growth and blood pressure development in neonatal spontaneously hypertensive rats. Lab Invest 56:189–197

    PubMed  Google Scholar 

  • Engelmann GL, Vitullo JC, Gerrity RG (1987) Morphometric analysis of cardiac hypertrophy during development, maturation, and senescence in spontaneously hypertensive rats. Circ Res 60:487–494

    CAS  PubMed  Google Scholar 

  • Ferrans VJ, Maron BJ, Jones M, et al (1976) Ultrastructural aspects of contractile proteins in cardiac hypertrophy and failure. Rec Adv Stud Card Struct Metab 12:129–210

    CAS  Google Scholar 

  • Frenzel H, Schwartzkopff B, Holtermann W, et al (1988) Regression of cardiac hypertrophy: morphometric and biochemical studies in rat heart after swimming training. J Mol Cell Cardiol 20:737–751

    CAS  PubMed  Google Scholar 

  • Gerdes AM, Moore JA, Hines JM (1987) Regional changes in myocyte size and number in propranolol-treated hyperthyroid rats. Lab Invest 57:707–713

    Google Scholar 

  • Gerdes AM, Campbell SE, Hilbelink DR (1988) Structural remodeling of cardiac myocytes in rats with arteriovenous fistulas. Lab Invest 59:857–861

    CAS  PubMed  Google Scholar 

  • Hamilton N, Ashton ML, Ianuzzo CD (1991) Cell size of mammalian myocardia is not related to physiological demand. Experientia 47:1070–1072

    CAS  PubMed  Google Scholar 

  • Hamrell BB, Roberts ET, Carkin JL, et al (1986) Myocyte morphology of free wall trabeculae in right ventricular pressure overload hypertrophy in rabbits. J Mol Cell Cardiol 18:127–138

    CAS  PubMed  Google Scholar 

  • Kayar SR, Weiss HR (1992) Diffusion distances, total capillary length and mitochondrial volume in pressure-overload myocardial hypertrophy. J Mol Cell Cardiol 24:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Kimpara K, Okabe M, Nishimura H, et al (1997) Ultrastructural changes during myocardial hypertrophy and its regression: long-term effects of nifedipine in adult spontaneously hypertensive rats. Heart Vessels 12:143–151

    CAS  PubMed  Google Scholar 

  • Klein I, Hong C (1986) Effects of thyroid hormone on cardiac size and myosin content of the heterotopically transplanted rat heart. J Clin Invest 77:1694–1698

    CAS  PubMed  Google Scholar 

  • Lei LQ, Rubin SA, Fishbein MC (1998) Cardiac architectural changes with hypertrophy induced by excess growth hormone in rats. Lab Invest 59:357–362

    Google Scholar 

  • Lukacikova E, Fizel A, Fizelova A, et al (1989) Quantitative ultrastructural characteristics of mitochondria and myofibrils in the myocardium in chronic hemodynamic overload. Cesk Patol 25:230–235

    CAS  PubMed  Google Scholar 

  • Lushnikova EL, Nepomniaxhchikh LM (1985) Ultrastructural sterological analysis of the absolute parameters of the cardiomyocytes in myocardial hypertrophy. Biull Eksp Biol Med 99:619–622

    CAS  PubMed  Google Scholar 

  • Lushnikova EL, Nepomniaschchikh LM, Tumanov VP, et al (1984) Ultrastructural stereological analysis of acute myocardial hypertrophy of hypertensive etiology. Biull Eksp Biol Med 97:366–370

    CAS  PubMed  Google Scholar 

  • Martin V, McCutcheon LJ, Poon L, et al (1993) Comparative mammal model of chronic rate overload: relationship of myocardial Ca-cycling to heart, metabolic and lipoperoxidation rates. Comp Biochem Physiol 106B:453–461

    Article  CAS  Google Scholar 

  • Mattfeldt T, Kramer K-L, Zeitz R, et al (1986) Stereology of myocardial hypertrophy induced by physical exercise. Virchows Arch 409:473–484

    CAS  Google Scholar 

  • Medugorac I (1976) Different fractions in the normal and hypertrophied rat ventricular myocardium: an analysis of two models of hypertrophy. Basic Res Cardiol 71:608–623

    CAS  PubMed  Google Scholar 

  • Moravec CS, Ruhe T, Cifani JR, et al (1994) Structural and functional consequences of minoxidil-induced cardiac hypertrophy. J Pharmacol Exp Ther 269:290–296

    CAS  PubMed  Google Scholar 

  • O’Brien PJ (1997) Deficiencies of myocardial troponin-T and creatine kinase MB isozyme in dogs with idiopathic dilated cardiomyopathy. Am J Vet Res 58:11–16

    CAS  PubMed  Google Scholar 

  • O’Brien PJ, Fletcher TF, Metz AL, et al (1987) Malignant hyperthermia susceptibility: cardiac histomorphometry of dogs and young and market-weight swine. Can J Vet Res 51:50–55

    CAS  PubMed  Google Scholar 

  • O’Brien PJ, Dameron GW, Beck ML, et al (1997a) Cardiac troponin T is a sensitive, specific biomarker of cardiac injury in laboratory animals. Lab Anim Sci 47:486–495

    CAS  PubMed  Google Scholar 

  • O’Brien PJ, Landt Y, Ladensen JH (1997b) Differential reactivity of cardiac and skeletal muscle from various species in a cardiac troponin I immunoassay. Clin Chem 43:2333–2338

    CAS  PubMed  Google Scholar 

  • Olivetti G, Quaini F, Lagrasta C (1992) Myocyte cellular hypertrophy and hyperplasia contribute to ventricular wall remodeling in anemia-induced cardiac hypertrophy in rats. Am J Path 141:227–239

    CAS  PubMed  Google Scholar 

  • Patel MB, Stewart JM, Loud AV, et al (1991) Altered function and structure of the heart in dogs with chronic elevation in plasma norepinephrine. Circulation 84:2091–2100

    CAS  PubMed  Google Scholar 

  • Rubin SA, Buttrick P, Malhotra A (1990) Cardiac physiology, biochemistry and morphology in response to excess growth hormone in the rat. J Mol Cell Cardiol 22:429–438

    Article  CAS  PubMed  Google Scholar 

  • Ruzicka M, Yuan B, Leenen FHH (1994) Effects of enalpril versus losartan on regression of volume overload-induced cardiac hypertrophy in rats. Circulation 90:484–491

    CAS  PubMed  Google Scholar 

  • Sacca L, Cittadinie A, Fazio S (1994) Growth hormone and the heart. Endocr Rev 15:555–573

    Article  CAS  PubMed  Google Scholar 

  • Schaper J, Meiser E, Stammler G (1995) Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res 56:377–391

    Google Scholar 

  • Smith SH, Bishop SP (1985) Regional myocyte size in compensated right ventricular hypertrophy in the ferret. J Mol Cell Cardiol 17:5–11

    Article  PubMed  Google Scholar 

  • Smith SH, McCaslin M, Sreenan C, et al (1988) Regional myocyte size in two-kidney, one clip renal hypertension. J Mol Cell Cardiol 20:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Harada K, Kawamura K, et al (1993) Limited adaptation in chronically hypertrophied hearts from aortic constricted rats: increased inhomogeneity in cross-sectional area of cardiomyocytes and intercapillary distance. Tohoku J Exp Med 170:181–195

    CAS  PubMed  Google Scholar 

  • Thomas DP, Phillips SJ, Bove AA (1984) Myocardial morphology and blood flow distribution in chronic volume-overload hypertrophy in dogs. Basic Res Cardiol 79:379–388

    CAS  PubMed  Google Scholar 

  • Toffolo RL, Ianuzzo CD (1994) Myofibrillar adaptations during cardiac hypertrophy. Mol Cell Biochem 131:141–149

    CAS  PubMed  Google Scholar 

  • Tsoporis J, Fields N, Lee RMKW, et al (1993) Effects of the arterial vasodilator minoxidil on cardiovascular structure and sympathetic activity in spontaneously hypertensive rats. J Hypertens 11:1337–1345

    CAS  PubMed  Google Scholar 

  • Urabe Y, Mann DL, Kent RL, et al (1991) Cellular and ventricular contractile dysfunction in experimental canine mitral regurgitation. Circ Res 70:131–147

    Google Scholar 

  • Wong K, Boheler KR, Bishop J, et al (1998) Clenbuterol induces cardiac hypertrophy with normal functional, morphological and molecular features. Cardiovasc Res 37:115–122

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Slaughter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slaughter, M.R., Campbell, S. & O’Brien, P.J. Myocardial concentration of cardiac troponin T as an early discriminator of mechanisms of cardiac hypertrophy. Comp Clin Path 13, 59–64 (2004). https://doi.org/10.1007/s00580-004-0522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-004-0522-6

Keywords

Navigation