Skip to main content
Log in

Universal Inequalities for Eigenvalues of a Clamped Plate Problem of the Drifting Laplacian

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

In this paper, we study the universal inequalities for eigenvalues of a clamped plate problem of the drifting Laplacian in several cases, and establish some universal inequalities that are different from those obtained previously in (Du et al. in Z Angew Math Phys 66(3):703–726, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

There are no data availability issues.

References

  • Agmon, S.: On kernels, eigenvalues, and eigenfunctions of operators related to elliptic problems. Commun. Pure Appl. Math. 18, 627–663 (1965)

    Article  MathSciNet  Google Scholar 

  • Ashbaugh, M.S.: Isoperimetric and universal inequalities for eigenvalues. Spectral theory and geometry (Edinburgh, 1998), 95–139, London Math. Soc. Lecture Note Ser., vol. 273. Cambridge University Press, Cambridge (1999)

  • Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of nonpositive curvature. Progress in Mathematics, vol. 61. Birkhäuser, Boston, vi+263 pp (1985)

  • Batista, M., Cavalcante, M.P., Pyo, J.: Some isoperimetric inequalities and eigenvalue estimates in weighted manifolds. J. Math. Anal. Appl. 419(1), 617–626 (2014)

    Article  MathSciNet  Google Scholar 

  • Cao, H.-D., Zhou, D.: On complete gradient shrinking Ricci solitons. J. Differ. Geom. 85(2), 175–185 (2010)

    Article  MathSciNet  Google Scholar 

  • Chen, D., Cheng, Q.-M.: Extrinsic estimates for eigenvalues of the Laplace operator. J. Math. Soc. Jpn. 60(2), 325–339 (2008)

    Article  MathSciNet  Google Scholar 

  • Chen, Z., Qian, C.: Estimates for discrete spectrum of Laplacian operator with any order. J. China Univ. Sci. Technol. 20(3), 259–266 (1990)

    MathSciNet  Google Scholar 

  • Cheng, Q.-M., Yang, H.: Estimates on eigenvalues of Laplacian. Math. Ann. 331(2), 445–460 (2005)

    Article  MathSciNet  Google Scholar 

  • Cheng, Q.-M., Yang, H.: Inequalities for eigenvalues of a clamped plate problem. Trans. Am. Math. Soc. 358(6), 2625–2635 (2006)

    Article  MathSciNet  Google Scholar 

  • Cheng, Q.-M., Yang, H.: Bounds on eigenvalues of Dirichlet Laplacian. Math. Ann. 337(1), 159–175 (2007)

    Article  MathSciNet  Google Scholar 

  • Cheng, Q.-M., Yang, H.: Universal inequalities for eigenvalues of a clamped plate problem on a hyperbolic space. Proc. Am. Math. Soc. 139(2), 461–471 (2011)

    Article  MathSciNet  Google Scholar 

  • Cheng, Q.-M., Ichikawa, T., Mametsuka, S.: Inequalities for eigenvalues of Laplacian with any order. Commun. Contemp. Math. 11(4), 639–655 (2009)

    Article  MathSciNet  Google Scholar 

  • Cheng, Q.-M., Ichikawa, T., Mametsuka, S.: Estimates for eigenvalues of a clamped plate problem on Riemannian manifolds. J. Math. Soc. Jpn. 62(2), 673–686 (2010)

    Article  MathSciNet  Google Scholar 

  • Cheng, X., Mejia, T., Zhou, D.: Eigenvalue estimate and compactness for closed \(f\)-minimal surfaces. Pac. J. Math. 271(2), 347–367 (2014)

    Article  MathSciNet  Google Scholar 

  • Colding, T.H., Minicozzi II, W.P.: Generic mean curvature flow I: generic singularities. Ann. Math. (2) 175(2), 755–833 (2012)

  • do Carmo, M.P., Wang, Q., Xia, C.: Inequalities for eigenvalues of elliptic operators in divergence form on Riemannian manifolds. Ann. Mat. Pura Appl. (4) 189(4), 643–660 (2010)

  • Du, F., Wu, C., Li, G., Xia, C.: Estimates for eigenvalues of the bi-drifting Laplacian operator. Z. Angew. Math. Phys. 66(3), 703–726 (2015)

    Article  MathSciNet  Google Scholar 

  • El Soufi, A., Harrell II, E.M., Ilias, S.: Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds. Trans. Am. Math. Soc. 361(5), 2337–2350 (2009)

  • Fang, F., Man, J., Zhang, Z.: Complete gradient shrinking Ricci solitons have finite topological type. C. R. Math. Acad. Sci. Paris 346(11–12), 653–656 (2008) (English, French summary)

  • Futaki, A., Li, H., Li, X.-D.: On the first eigenvalue of the Witten–Laplacian and the diameter of compact shrinking solitons. Ann. Global Anal. Geom. 44(2), 105–114 (2013) (English summary)

  • Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Reprint of the 1952 edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, xii+324 pp (1988)

  • Heintze, E., Im Hof, H.-C.: Geometry of horospheres. J. Differ. Geom. 12(4), 481–491 (1978)

    MathSciNet  Google Scholar 

  • Hile, G.N., Yeh, R.Z.: Inequalities for eigenvalues of the biharmonic operator. Pac. J. Math. 112(1), 115–133 (1984)

    Article  MathSciNet  Google Scholar 

  • Hook, S.M.: Domain-independent upper bounds for eigenvalues of elliptic operators. Trans. Am. Math. Soc. 318(2), 615–642 (1990)

    Article  MathSciNet  Google Scholar 

  • Li, P.: Eigenvalue estimates on homogeneous manifolds. Comment. Math. Helv. 55(3), 347–363 (1980)

    Article  MathSciNet  Google Scholar 

  • Li, H., Wei, Y.: \(f\)-minimal surface and manifold with positive m-Bakry–Émery Ricci curvature. J. Geom. Anal. 25(1), 421–435 (2015)

    Article  MathSciNet  Google Scholar 

  • Li, X., Mao, J., Zeng, L.: Eigenvalues of the bi-drifting Laplacian on the complete noncompact Riemannian manifolds. Z. Angew. Math. Phys. 73(6), Paper No. 240 (2022)

  • Ma, L., Du, S.-H.: Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians. C. R. Math. Acad. Sci. Paris 348(21–22), 1203–1206 (2010) (English, French summary)

  • Ma, L., Liu, B.: Convexity of the first eigenfunction of the drifting Laplacian operator and its applications. N. Y. J. Math. 14, 393–401 (2008)

    MathSciNet  Google Scholar 

  • Ma, L., Liu, B.: Convex eigenfunction of a drifting Laplacian operator and the fundamental gap. Pac. J. Math. 240(2), 343–361 (2009)

    Article  MathSciNet  Google Scholar 

  • Munteanu, O., Wang, J.: Analysis of weighted Laplacian and applications to Ricci solitons. Commun. Anal. Geom. 20(1), 55–94 (2012)

    Article  MathSciNet  Google Scholar 

  • Payne, L.E., Pólya, G., Weinberger, H.F.: On the ratio of consecutive eigenvalues. J. Math. Phys. 35, 289–298 (1956)

    Article  MathSciNet  Google Scholar 

  • Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, preprint (2002). arXiv:math/0211159

  • Sakai, T.: On Riemannian manifolds admitting a function whose gradient is of constant norm. Kodai Math. J. 19(1), 39–51 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  • Wang, Q., Xia, C.: Universal inequalities for eigenvalues of the buckling problem on spherical domains. Commun. Math. Phys. 270(3), 759–775 (2007a)

  • Wang, Q., Xia, C.: Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds. J. Funct. Anal. 245(1), 334–352 (2007b)

  • Wang, Q., Xia, C.: Universal bounds for eigenvalues of Schrödinger operator on Riemannian manifolds. Ann. Acad. Sci. Fenn. Math. 33(2), 319–336 (2008)

    MathSciNet  Google Scholar 

  • Wang, Q., Xia, C.: Inequalities for eigenvalues of a clamped plate problem. Calc. Var. Partial Differ. Equ. 40(1–2), 273–289 (2011)

    Article  MathSciNet  Google Scholar 

  • Wei, G., Wylie, W.: Comparison geometry for the Bakry–Émery Ricci tensor. J. Differ. Geom. 83(2), 377–405 (2009) (English summary)

  • Xia, C.: Eigenvalues on Riemannian manifolds. Publicações Matemáticas do IMPA. [IMPA Mathematical Publications] \(29^\circ \) Colóquio Brasileiro de Matemática. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 4+112 pp (2013)

  • Xia, C., Xu, H.: Inequalities for eigenvalues of the drifting Laplacian on Riemannian manifolds. Ann. Global Anal. Geom. 45(3), 155–166 (2014)

    Article  MathSciNet  Google Scholar 

  • Xiong, X., Zeng, L., Zhu, H.: Estimates for the higher eigenvalues of the drifting Laplacian on Hadamard manifolds. Kodai Math. J. 45(1), 143–156 (2022)

    Article  MathSciNet  Google Scholar 

  • Zeng, L.: Estimates for the eigenvalues of the bi-drifting Laplacian on complete metric measure spaces. J. Math. Phys. 61(10), 101504 (2020a)

  • Zeng, L.: Lower order eigenvalues for the bi-drifting Laplacian on the Gaussian shrinking soliton. J. Korean Math. Soc. 57(6), 1471–1484 (2020b)

  • Zeng, L.: Eigenvalue inequalities for the clamped plate problem of the \(\mathfrak{L} _\nu ^2\) operator. Sci. China Math. 65(4), 793–812 (2022)

    Article  MathSciNet  Google Scholar 

  • Zeng, L., Sun, H.-J.: Eigenvalues of the drifting Laplacian on smooth metric measure spaces. Pac. J. Math. 319(2), 439–470 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue He.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yue He was partially supported by Key Laboratory of Applied Mathematics of Fujian Province University (Putian University) (No. SX202101).

Appendix

Appendix

To prove some results of this paper, we need the following inequalities:

Lemma 5.1

(Weighted Chebyshev inequality, see Hardy et al. 1988) Let \(\{a_i\}^k_{i=1},\{b_i\}^k_{i=1}\) and \(\{c_i\}^k_{i=1}\) be three sequences of non-negative real numbers with \(\{a_i\}^k_{i=1}\) decreasing; \(\{b_i\}^k_{i=1}\) and \(\{c_i\}^k_{i=1}\) increasing. Then the following inequality holds

$$\begin{aligned} \left( \sum _{i=1}^ka_i^2b_i\right) \left( \sum _{i=1}^ka_ic_i\right) \le \left( \sum _{i=1}^ka_i^2\right) \left( \sum _{i=1}^ka_ib_ic_i\right) . \end{aligned}$$

Lemma 5.2

(Chebyshev sum inequality, see Hardy et al. 1988) Let \(\{a_i\}^k_{i=1}\) and \(\{b_i\}^k_{i=1}\) be two sequences of real numbers with \(\{a_i\}^k_{i=1}\) and \(\{b_i\}^k_{i=1}\) increasing or decreasing. Then the following inequality holds

$$\begin{aligned} \frac{1}{k}\left( \sum _{i=1}^ka_i\right) \left( \sum _{i=1}^kb_i\right) \le \sum _{i=1}^ka_ib_i. \end{aligned}$$

with equality if and only if

$$\begin{aligned} a_1=\cdots =a_k,\quad \hbox {or}\quad b_1=\cdots =b_k. \end{aligned}$$

Lemma 5.3

(Reverse Chebyshev inequality, see Hardy et al. 1988) Suppose \(\{a_i\}_{i=1}^k\) and \(\{b_i\}_{i=1}^k\) are two real sequences with \(\{a_i\}_{i=1}^k\) increasing and \(\{b_i\}_{i=1}^k\) decreasing. Then the following inequality holds:

$$\begin{aligned} \frac{1}{k}\left( \sum _{i=1}^ka_i\right) \left( \sum _{i=1}^kb_i\right) \ge \sum _{i=1}^ka_ib_i, \end{aligned}$$

with equality if and only if

$$\begin{aligned} a_1=\cdots =a_k\quad \hbox {or}\quad b_1=\cdots =b_k. \end{aligned}$$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Pu, S. Universal Inequalities for Eigenvalues of a Clamped Plate Problem of the Drifting Laplacian. Bull Braz Math Soc, New Series 55, 10 (2024). https://doi.org/10.1007/s00574-024-00384-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00574-024-00384-w

Keywords

Mathematics Subject Classification

Navigation