Skip to main content
Log in

Fast Overcomplete Dictionary Construction with Probabilistic Guarantees

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

In dictionary learning, a matrix comprised of signals Y is factorized into the product of two matrices: a matrix of prototypical atoms D, and a sparse matrix containing coefficients for atoms in D, called X. This process has applications in signal processing, image recognition, and a number of other fields. Many procedures for solving the dictionary learning problem follow the alternating minimization paradigm; that is, by alternating between solving for D and X, until the procedure converges to a solution. Our findings indicate that the costly step of alternating minimization can be avoided in some cases, by modifying an initialization procedure that was proposed in 2014. We provide theoretical justification and empirical evidence showing that atom recovery and reasonable data reconstruction is possible under these new assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal, A., Anandkumar, A., Jain, P., Netrapalli, P., Tandon, R.: Learning sparsely used overcomplete dictionaries. Proc. Mach. Learn. Res. (COLT) 35, 123–137 (2014)

    MATH  Google Scholar 

  • Agarwal, A., Anandkumar, A., Jain, P., Netrapalli, P.: Learning sparsely used overcomplete dictionaries via alternating minimization. SIAM J. Optim. 26(4), 2775–2799 (2016)

    Article  MathSciNet  Google Scholar 

  • Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 4311–4322 (2006)

    Article  Google Scholar 

  • Arora, S., Ge, R., Moitra, A.: New algorithms for learning incoherent and overcomplete dictionaries. Proc. Mach. Learn. Res. (COLT) 35, 779–806 (2014)

    Google Scholar 

  • Bandeira, A.S., Mixon, D.G., Moreira, J.: A conditional construction of restricted isometries. Int. Math. Res. Not. IMRN 2, 372–381 (2017)

    Article  MathSciNet  Google Scholar 

  • Barak, B., Kelner, J.A., Steurer, D.: Dictionary learning and tensor decomposition via the sum-of-squares method. STOC (2015)

  • Blumensath, T., Davies, M.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–74 (2009)

    Article  MathSciNet  Google Scholar 

  • Bouton, C.E., Shaikhouni, A., Annetta, N.V., Bockbrader, M.A., Friedenberg, D.A., Nielson, D.M.: e.a.: Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–250 (2016)

    Article  Google Scholar 

  • Cai, T.T., Wang, L.: Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inf. Theory 57(7), 4680–4688 (2011)

    Article  MathSciNet  Google Scholar 

  • Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006a)

    Article  MathSciNet  Google Scholar 

  • Candes, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006b)

    Article  MathSciNet  Google Scholar 

  • Cohen, A., Dahmen, W., DeVore, R.: Orthogonal matching pursuit under the restricted isometry property. Constr. Approx. 45(1), 113–127 (2017)

    Article  MathSciNet  Google Scholar 

  • Daubechies, I., DeVore, R., Fornasier, M., Gunturk, S.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63(1), 1–38 (2010)

    Article  MathSciNet  Google Scholar 

  • Davenport, M.A., Wakin, M.B.: Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Trans. Inf. Theory 56(9), 4395–4401 (2010)

    Article  MathSciNet  Google Scholar 

  • Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  • Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via \(l^{1}\) minimization. Proc. Natl. Acad. Sci. 100(1), 2197–2202 (2003)

    Article  MathSciNet  Google Scholar 

  • Engan, K., Aase, S., Husoy, J.: Method of optimal directions for frame design. In: Proceedings of 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing (1999)

  • Field, D., Olshausen, B.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  • Foucart, S.: Sparse recovery algorithms: sufficient conditions in terms of restricted isometry constants. Approximation Theory XIII: San Antonio 2010. Springer Proceedings in Mathematics, vol. 13, pp. 65–77. Springer, New York (2012)

  • Gribonval, R., Schnass, K.: Dictionary identification-sparse matrix-factorization via \(l1\)-minimization. IEEE Trans. Inf. Theory 56(7), 3523–3539 (2010)

    Article  Google Scholar 

  • Gribonval, R., Jenatton, R., Bach, F.: Sparse and spurious: dictionary learning with noise and outliers. IEEE Trans. Inf. Theory 61(11), 6298–6319 (2015)

    Article  MathSciNet  Google Scholar 

  • Hansen, F., Pedersen, G.: Jensen’s operator inequality. Bull. Lond. Math. Soc. 35(4), 553–564 (2003)

    Article  MathSciNet  Google Scholar 

  • Jenatton, R., Mairal, J., Obozinski, G., Bach, F.R.: Proximal methods for sparse hierarchical dictionary learning. In: 27th International Conference on Machine Learning

  • Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. Multiscale Model. Simul. 7(1), 214–241 (2008)

    Article  MathSciNet  Google Scholar 

  • Naumova, V., Schnass, K.: Dictionary learning from incomplete data for efficient image restoration. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 1425–1429 (2017)

  • Newman, D., Shepp, L.: The double dixie cup problem. Am. Math. Mon. 67(1), 58–61 (1960)

    Article  MathSciNet  Google Scholar 

  • Schnass, K.: On the identifiability of overcomplete dictionaries via the minimisation principle underlying K-SVD. Appl. Comput. Harmon. Anal. 37(3), 464–491 (2014)

    Article  MathSciNet  Google Scholar 

  • Spielman, D.A., Wang, H., Wright, J.: Exact recovery of sparsely-used dictionaries. Proc. Mach. Learn. Res. (COLT) 23, 1–18 (2012)

    Google Scholar 

  • Tosic, I., Frossard, P.: Dictionary learning. IEEE Signal Process. Mag. 28(2), 27–38 (2011)

    Article  Google Scholar 

  • Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

  • Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices. In: Compressed Sensing, pp. 210–268. Cambridge University Press, Cambridge (2012)

  • Zhang, Q., Li, B.: Discriminative K-SVD for dictionary learning in face recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2691–2698 (2010)

Download references

Acknowledgements

Enrico Au-Yeung is grateful for the financial support of an Undergraduate Research Assistant Program (URAP) Grant from DePaul University. Greg Zanotti is grateful that the Undergraduate Research Assistant Program (URAP) Grant from DePaul University makes this research project possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Au-Yeung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Au-Yeung, E., Zanotti, G. Fast Overcomplete Dictionary Construction with Probabilistic Guarantees. Bull Braz Math Soc, New Series 51, 719–743 (2020). https://doi.org/10.1007/s00574-019-00171-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-019-00171-y

Keywords

Navigation