Skip to main content
Log in

An empirical investigation of the possibility of adaptability of arbuscular mycorrhizal fungi to new hosts

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Little is known about the adaptive capacity of arbuscular mycorrhizal (AM) fungi to novel hosts. Here we assessed the possibility of two heterospecific AM fungal isolates to adaptively change, in terms of host biomass response, as a function of host plant identity, over the course of a growing season. First, we produced pure inocula of Rhizophagus clarus and Rhizophagus intraradices, each starting from a single spore. Second, we “trained” each isolate individually in a community with two plants, sudangrass (Sorgum bicolour subsp. drummondii) and leek (Aliium ampeloprasum var. porrum), using a dual-compartment system to allow the establishment of a common mycorrhizal network between the two hosts. Third, we conducted a greenhouse experiment to reciprocally test each “trained” clone, obtained from each compartment, either with the same (home), or the other host (away) under two contrasting phosphorus levels. Overall, results did not support adaptive responses of the AM fungi to their hosts (i.e., greater host biomass under “home” relative to “away” conditions), but the opposite (i.e., greater host biomass under “away” relative to “home” conditions) was more frequently observed. These changes in AM fungal symbiotic functioning open the possibility for relatively rapid genetic change of arbuscular mycorrhizal fungi in response to new hosts, which represents one step forward from in vitro experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen MF, Swenson W, Querejeta JI, Egerton-Warburton LM, Treseder KK (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu Rev Phytopathol 41:271–303

    Article  CAS  PubMed  Google Scholar 

  • Angelard C, Tanner CJ, Fontanillas P, Niculita-Hirzel H, Masclaux F, Sanders IR (2014) Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation. ISME J 8:284–294

    Article  CAS  PubMed  Google Scholar 

  • Antunes PM, Koch AM, Morton JB, Rillig MC, Klironomos JN (2011) Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol 189:507–514

    Article  PubMed  Google Scholar 

  • Behm JE, Kiers ET (2014) A phenotypic plasticity framework for assessing intraspecific variation in arbuscular mycorrhizal fungal traits. J Ecol 102:315–327

    Article  Google Scholar 

  • Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21

    Article  PubMed  Google Scholar 

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82:3057–3068

    Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Bray RH, Kurtz L (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59(1):39–46

    Article  CAS  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Couzigou J-M, Lauressergues D, André O, Gutjahr C, Guillotin B, Bécard G, Combier J-P (2017) Positive gene regulation by a natural protective miRNA enables arbuscular mycorrhizal symbiosis. Cell Host Microbe 21:106–112

    Article  CAS  PubMed  Google Scholar 

  • Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 18:924–937

    Article  Google Scholar 

  • Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, Pärtel M, Reier Ü, Saks Ü, Singh R, Vasar M, Zobel M (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973

    Article  CAS  PubMed  Google Scholar 

  • Ehinger MO, Croll D, Koch AM, Sanders IR (2012) Significant genetic and phenotypic changes arising from clonal growth of a single spore of an arbuscular mycorrhizal fungus over multiple generations. New Phytol 196:853–861

    Article  CAS  PubMed  Google Scholar 

  • Fitter A (2006) What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol 172:3–6

    Article  CAS  PubMed  Google Scholar 

  • Grman E (2012) Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93:711–718

    Article  PubMed  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    Article  CAS  PubMed  Google Scholar 

  • He XH, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Cr Rev Plant Sci 22:531–567

    Article  Google Scholar 

  • Helgason T, Fitter AH (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). J Exp Bot 60:2465–2480

    Article  CAS  PubMed  Google Scholar 

  • Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:160–163

    Article  CAS  PubMed  Google Scholar 

  • Hoeksema JD, Schwartz MW (2003) Expanding comparative–advantage biological market models: contingency of mutualism on partner’s resource requirements and acquisition trade-offs. Proc R Soc Lond [Biol] 270:913–919

    Article  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • IJdo M, Schtickzelle N, Cranenbrouck S, Declerck S (2010) Do arbuscular mycorrhizal fungi with contrasting life-history strategies differ in their responses to repeated defoliation? FEMS Microbiol Ecol 72:114–122

    Article  CAS  PubMed  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    Article  PubMed  Google Scholar 

  • Ji B, Bever JD (2016) Plant preferential allocation and fungal reward decline with soil phosphorus: implications for mycorrhizal mutualism. Ecosphere 7(5):e01256

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–757

    Article  PubMed  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Wilson GW, Bowker MA, Wilson JA, Miller RM (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci U S A 107:2093–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Kiers ET, West SA, Wyatt GA, Gardner A, Bücking H, Werner GD (2016) Misconceptions on the application of biological market theory to the mycorrhizal symbiosis. Nat Plants 2:16063

    Article  PubMed  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett 3:137–141

    Article  Google Scholar 

  • Koch AM, Antunes PM, Maherali H, Hart MM, Klironomos JN (2017) Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytol 214(3):1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Kuhn G, Hijri M, Sanders IR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414:745–748

    Article  CAS  PubMed  Google Scholar 

  • Lambert D, Weidensaul T (1991) Element uptake by mycorrhizal soybean from sewage-sludge-treated soil. Soil Sci Soc Am J 55:393–398

    Article  CAS  Google Scholar 

  • Mäder P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christie P, Wiemken A (2000) Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146:155–161

    Article  Google Scholar 

  • Maherali H, Oberle B, Stevens PF, Cornwell WK, McGlinn DJ (2016) Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Amer Nat 188:E113–E125

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430

    Article  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Rev Microbiol 6:763–775

    Article  CAS  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL https://www.R-project.org /

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291

    Article  Google Scholar 

  • Rúa MA, Antoninka A, Antunes PM, Chaudhary VB, Gehring C, Lamit LJ, Piculell BJ, Bever JD, Zabinski C, Meadow JF, Lajeunesse MJ, Miligam BG, Karst J, Hoeksema JD (2016) Home-field advantage? Evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evol Biol 16:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Gomez M (1995) Effects of arbuscular-mycorrhizal glomus species on drought tolerance: physiological and nutritional plant responses. App Env Microbiol 61:456–460

    CAS  Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140–1165

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, New York, 787p

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steidinger BS, Bever JD (2014) The coexistence of hosts with different abilities to discriminate against cheater partners: an evolutionary game-theory approach. Am Nat 183:762–770

    Article  PubMed  Google Scholar 

  • Thrall PH, Hochberg ME, Burdon JJ, Bever JD (2007) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22:120–126

    Article  PubMed  Google Scholar 

  • Tommerup IC (1992) Methods for the study of population biology of vesicular-arbuscular mycorrhizal fungi. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol Vol. 24. Academic Press, Harcourt Brace Jovanovich, Publ, London, pp 23–52

    Google Scholar 

  • Treseder KK (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371:1–13

    Article  CAS  Google Scholar 

  • van der Heijden MG, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998a) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • van der Heijden MG, Boller T, Wiemken A, Sanders IR (1998b) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • van der Heijden MG, Wiemken A, Sanders IR (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol 157:569–578

    Article  Google Scholar 

  • Walder F, van der Heijden MG (2015) Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat Plants 1:15159

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Werner GD, Strassmann JE, Ivens AB, Engelmoer DJ, Verbruggen E, Queller DC, Noë R, Johnson NC, Hammerstein P, Kiers ET (2014) Evolution of microbial markets. Proc Natl Acad Sci U S A 111:1237–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Ann Rev Ecol Sys 20:249–278

    Article  Google Scholar 

  • Young JPW (2015) Genome diversity in arbuscular mycorrhizal fungi. Curr Opin Plant Biol 26:113–119

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Ji B, Zhang J, Zhang F, Bever JD (2015) Shading decreases plant carbon preferential allocation towards the most beneficial mycorrhizal mutualist. New Phytol 205:361–368

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Jordache Boudreau and Angela Dukes for the technical support in the greenhouse and Drs. Alexander M. Koch and Ylva Lekberg for the thoughtful comments on the manuscript. We also thank the Ontario Forestry Research Institute for housing the final phase of the experiment. This research was supported through a National Sciences and Engineering Research Council of Canada (NSERC) Undergraduate Student Research Award to OP and a NSERC Discovery Grant to PMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. Antunes.

Electronic supplementary material

Fig. S1

(DOCX 102 kb)

Table S1

(DOCX 12 kb)

Table S2

(DOCX 12 kb)

Table S3

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyama, A., Pietrangelo, O., Sanderson, L. et al. An empirical investigation of the possibility of adaptability of arbuscular mycorrhizal fungi to new hosts. Mycorrhiza 27, 553–563 (2017). https://doi.org/10.1007/s00572-017-0776-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-017-0776-x

Keywords

Navigation