Skip to main content

Advertisement

Log in

An adaptive controller for human lower extremity exoskeleton robot

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Exoskeleton robot-assisted physical therapy has recently been studied extensively due to its proven effectiveness in providing different forms of physical therapy at any stage of physical recovery. The efficacy of robot-assisted physical therapy depends on the maneuverability of the robot during the rehabilitation application. Robot dynamics is inherently nonlinear. Often, robot control algorithms are developed based on an approximate robot dynamic model which leads to system instability and tracking errors. Accurately determining a rehabilitation robot's payload (human limb masses and inertial properties) is frequently impractical. An adaptive control scheme can handle modeling errors very efficiently. In this paper, a 7 degrees of freedom (DOF) human lower extremity dynamic model was developed using the Newton Euler’s method. To simulate joint friction, a realistic friction model is included. A direct adaptive controller is designed so that the robot can follow the prescribed trajectory with high speed and accuracy. A total of 31 model parameters were considered for adaption. To ensure system stability, the controller's adaptive gains are determined based on the Lyapunov stability approach. Simulation results show excellent tracking performance of the developed controller in the presence of joint friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Agrawal SK, Banala SK, Fattah A, Sangwan V, Krishnamoorthy V, Scholz JP, Hsu W (2007) Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans Neural Syst Rehabil Eng 15:410–420. https://doi.org/10.1109/TNSRE.2007.903930

    Article  Google Scholar 

  • Banala SK, Agrawal SK, Scholz JP (2007) Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th international conference on rehabilitation robotics, 13–15 June 2007, pp 401–407. https://doi.org/10.1109/ICORR.2007.4428456

  • Bernhardt M, Frey M, Colombo G, Riener R (2005) Hybrid force-position control yields cooperative behaviour of the rehabilitation robot LOKOMAT. In: 9th international conference on rehabilitation robotics, ICORR 2005, 28 June–1 July 2005, pp 536–539. https://doi.org/10.1109/ICORR.2005.1501159

  • Chen B et al (2017) A wearable exoskeleton suit for motion assistance to paralysed patients. J Orthop Transl 11:7–18. https://doi.org/10.1016/j.jot.2017.02.007

    Article  Google Scholar 

  • Chen B, Zhong C, Zhao X, Ma H, Qin L, Liao W (2019) Reference joint trajectories generation of CUHK-EXO exoskeleton for system balance in walking assistance. IEEE Access 7:33809–33821. https://doi.org/10.1109/ACCESS.2019.2904296

    Article  Google Scholar 

  • Colombo et al (2000) Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 37:693–700

    Google Scholar 

  • Contini R (1972) Body segment parameters. Part I I 16:1–19

    Google Scholar 

  • Craig J, Ping H, Sastry S (1986) Adaptive control of mechanical manipulators. In: Proceedings. 1986 IEEE international conference on robotics and automation, 7–10 April 1986, pp 190–195. https://doi.org/10.1109/ROBOT.1986.1087661

  • Craig JJ (2005) Introduction to robotics: mechanics and control. Pearson/Prentice Hall, Upper Saddle River

    Google Scholar 

  • de Leva P (1996) Adjustments to Zatsiorsky–Seluyanov’s segment inertia parameters. J Biomech 29:1223–1230. https://doi.org/10.1016/0021-9290(95)00178-6

    Article  Google Scholar 

  • Díaz I, Gil JJ, Sánchez E (2011) Lower-limb robotic rehabilitation: literature review and challenges. J Robot 2011:1–11

    Article  Google Scholar 

  • Esquenazi A, Talaty M, Packel A, Saulino M (2012) The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 91:911–921

    Article  Google Scholar 

  • Farris RJ, Quintero HA, Murray SA, Ha KH, Hartigan C, Goldfarb M (2014) A preliminary assessment of legged mobility provided by a lower limb exoskeleton for persons with paraplegia. IEEE Trans Neural Syst Rehabil Eng 22:482–490. https://doi.org/10.1109/TNSRE.2013.2268320

    Article  Google Scholar 

  • Hasan SK, Dhingra AK (2020) 8 Degrees of freedom human lower extremity kinematic and dynamic model development and control for exoskeleton robot based physical therapy. Int J Dyn Control. https://doi.org/10.1007/s40435-020-00620-3

    Article  Google Scholar 

  • Hian Kai K, Noorden JH, Missel M, Craig T, Pratt JE, Neuhaus PD (2009) Development of the IHMC mobility assist exoskeleton. In: 2009 IEEE international conference on robotics and automation, 12–17 May 2009, pp 2556–2562. https://doi.org/10.1109/ROBOT.2009.5152394

  • Hollands KL, Pelton TA, Tyson SF, Hollands MA, van Vliet PM (2012) Interventions for coordination of walking following stroke: systematic review. Gait Posture 35:349–359

    Article  Google Scholar 

  • Hyon S, Morimoto J, Matsubara T, Noda T, Kawato M (2011) XoR: Hybrid drive exoskeleton robot that can balance. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, 25–30 Sept. 2011, pp 3975–3981. https://doi.org/10.1109/IROS.2011.6095079

  • Jianfeng S, Runze Y, Linhong J (2013) Lower-limb robot-assisted therapy in rehabilitation of acute and subacute stroke patients. In: Long M (ed) World congress on medical physics and biomedical engineering May 26–31, 2012, Beijing, China, vol 39. IFMBE Proceedings. Springer Berlin Heidelberg, pp 2034–2037. https://doi.org/10.1007/978-3-642-29305-4_534

  • Kawamoto H, Hayashi T, Sakurai T, Eguchi K, Sankai Y (2009) Development of single leg version of HAL for hemiplegia. In: 2009 Annual international conference of the IEEE engineering in medicine and biology society, 3-6 Sept. 2009, pp 5038-5043. https://doi.org/10.1109/IEMBS.2009.5333698

  • Kawamoto H, Sankai Y (2004) Power assist method based on phase sequence driven by interaction between human and robot suit. In: RO-MAN 2004. 13th IEEE international workshop on robot and human interactive communication (IEEE Catalog No.04TH8759), 22–22 Sept. 2004, pp 491–496. https://doi.org/10.1109/ROMAN.2004.1374809

  • Kazerooni H, Steger R, Huang L (2006) Hybrid control of the berkeley lower extremity exoskeleton (BLEEX). Int J Robot Res 25:561–573. https://doi.org/10.1177/0278364906065505

    Article  Google Scholar 

  • Kendall FP, McCreary EK, Provance PG, Rodgers MM, Romani WA (2005) Muscles: testing and function, with posture and pain. 5th edn. LWW

  • Kenta Suzuki GM, Kawamoto H, Hasegawa Y, Sankai Y (2005) Intention-based walking support for paraplegia patients with robot suit HAL.pdf

  • Kim J-H, Han JW, Kim DY, Baek YS (2013) Design of a walking assistance lower limb exoskeleton for paraplegic patients and hardware validation using CoP. Int J Adv Robot Syst 10:113. https://doi.org/10.5772/55336

    Article  Google Scholar 

  • Kim SH, Banala SK, Brackbill EA, Agrawal SK, Krishnamoorthy V, Scholz JP (2010) Robot-assisted modifications of gait in healthy individuals. Exp Brain Res 202:809–824. https://doi.org/10.1007/s00221-010-2187-5

    Article  Google Scholar 

  • Kong K, Moon H, Hwang B, Jeon D, Tomizuka M (2009) Impedance compensation of SUBAR for back-drivable force-mode actuation. IEEE Trans Robot 25:512–521. https://doi.org/10.1109/TRO.2009.2019786

    Article  Google Scholar 

  • Kurz T (2015) Normal Ranges of Joint Motion. http://web.mit.edu/tkd/stretch/stretching_8.html.

  • Kyoungchul K, Doyoung J (2006) Design and control of an exoskeleton for the elderly and patients. IEEE ASME Trans Mechatron 11:428–432

    Article  Google Scholar 

  • Lee T, Lee D, Song B, Baek YS (2019) Design and control of a polycentric knee exoskeleton using an electro-hydraulic. Actuator Sens (Basel) 20:211. https://doi.org/10.3390/s20010211

    Article  Google Scholar 

  • Liu S, Chen GS (2018) Dynamics and control of robotic manipulators with contact and friction

  • Mathworks.com (2020) Friction in contact between rotating bodies. https://www.mathworks.com/help/physmod/simscape/ref/rotationalfriction.html. Accessed 07 Jan 2020

  • Meng W, Liu Q, Zhou Z, Ai Q, Sheng B, Xie S (2015) Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 31:132–145. https://doi.org/10.1016/j.mechatronics.2015.04.005

    Article  Google Scholar 

  • Mori Y, Okada J, Takayama K (2006) Development of a standing style transfer system “ABLE” for disabled lower limbs. IEEE ASME Trans Mechatron 11:372–380. https://doi.org/10.1109/TMECH.2006.878558

    Article  Google Scholar 

  • Mozaffarian D et al (2015) Executive summary: heart disease and stroke statistics–2015 update: a Report From the American Heart Association. Circulation 131:434–441. https://doi.org/10.1161/cir.0000000000000157

    Article  Google Scholar 

  • National Spinal Cord Injury Statistical Center B, Alabama (2013) Spinal Cord Injury Facts and Figures at a Glance

  • Neuhaus PD, Noorden JH, Craig TJ, Torres T, Kirschbaum J, Pratt JE (2011) Design and evaluation of Mina: a robotic orthosis for paraplegics. In: 2011 IEEE international conference on rehabilitation robotics, June 29 2011–July 1 2011, pp 1–8. https://doi.org/10.1109/ICORR.2011.5975468

  • Nikolova G, Toshev Y (2008) Comparison of two approaches for calculation of the geometric and inertial characteristics of the human body of the Bulgarian population. Acta Bioeng Biomech 10:3–8

    Google Scholar 

  • Pennestrì E, Rossi V, Salvini P, Valentini PP (2016) Review and comparison of dry friction force models. Nonlinear Dyn 83:1785–1801. https://doi.org/10.1007/s11071-015-2485-3

    Article  MATH  Google Scholar 

  • Russell F, Vaidyanathan R, Ellison P (2018) A kinematic model for the design of a bicondylar mechanical knee. In: 2018 7th IEEE international conference on biomedical robotics and biomechatronics (Biorob), 26–29 Aug. 2018, pp 750–755. https://doi.org/10.1109/BIOROB.2018.8487734

  • Sanz-Merodio D, Cestari M, Arevalo JC, Garcia E (2012) Control motion approach of a lower limb orthosis to reduce energy consumption. Int J Adv Robot Syst 9:232. https://doi.org/10.5772/51903

    Article  Google Scholar 

  • Shi D, Zhang W, Zhang W, Ding X (2019) A review on lower limb rehabilitation exoskeleton robots. Chin J Mech Eng 32:74. https://doi.org/10.1186/s10033-019-0389-8

    Article  Google Scholar 

  • Slotine JE, Li W (1988) Adaptive manipulator control: a case study. IEEE Trans Autom Control 33:995–1003. https://doi.org/10.1109/9.14411

    Article  MATH  Google Scholar 

  • Stegall P, Winfree KN, Agrawal SK (2012) Degrees-of-freedom of a robotic exoskeleton and human adaptation to new gait templates. In: 2012 IEEE international conference on robotics and automation, 14–18 May 2012, pp 4986–4991. https://doi.org/10.1109/ICRA.2012.6225092

  • Strickland E (2011) Good-bye, Wheelchair, Hello Exoskeleton. IEEE SPECTRUM. http://spectrum.ieee.org/biomedical/bionics/goodbye-wheelchair-hello-exoskeleton.

  • Surgeons. AAoO (1965) Joint motion: methods of measuring and recording. American Academy of Orthopaedic Surgeons, Chicago

    Google Scholar 

  • Tagliamonte NL, Sergi F, Carpino G, Accoto D, Guglielmelli E (2013) Human–robot interaction tests on a novel robot for gait assistance. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR), 24–26 June 2013, pp 1–6. https://doi.org/10.1109/ICORR.2013.6650387

  • Trompa AM, Pluijma SMF, Smitb JH, Deega DJH, Boutera LM, Lips P (2001) Fall-risk screening test. J Clin Epidemiol 54(2001):837–844

    Article  Google Scholar 

  • Veneman JF, Ekkelenkamp R, Kruidhof R, Helm FCTVD, Kooij HVD (2005) Design of a series elastic- and Bowden cable-based actuation system for use as torque-actuator in exoskeleton-type training. In: 9th international conference on rehabilitation robotics, 2005. ICORR 2005, 28 June–1 July 2005, pp 496–499. https://doi.org/10.1109/ICORR.2005.1501150

  • Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Asseldonk EHFV, Kooij HVD (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15:379–386. https://doi.org/10.1109/TNSRE.2007.903919

    Article  Google Scholar 

  • Wang L, Wang S, Asseldonk EHFV, Kooij HVd (2013) Actively controlled lateral gait assistance in a lower limb exoskeleton. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, 3–7 Nov. 2013, pp 965–970. https://doi.org/10.1109/IROS.2013.6696467

  • WHO Mc (2015) Disability and health Fact sheet N°352 Reviewed December 2015. http://www.who.int/mediacentre/factsheets/fs352/en/

  • Yamamoto K, Ishii M, Noborisaka H, Hyodo K (2004) Stand alone wearable power assisting suit—sensing and control systems. In: RO-MAN 2004. In: 13th IEEE international workshop on robot and human interactive communication (IEEE Catalog No.04TH8759), 22–22 Sept. 2004, pp 661–666. https://doi.org/10.1109/ROMAN.2004.1374841

  • Yoshimitsu T, Yamamoto K (2004) Development of a power assist suit for nursing work. In: SICE 2004 annual conference, 4–6 Aug. 2004, vol 571, pp 577–580

  • Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A (2012) Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J Spinal Cord Med 35:96–101

    Article  Google Scholar 

  • Zoss AB, Kazerooni H, Chu A (2006) Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans Mechatron 11:128–138. https://doi.org/10.1109/TMECH.2006.871087

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Hasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, S.K., Dhingra, A.K. An adaptive controller for human lower extremity exoskeleton robot. Microsyst Technol 27, 2829–2846 (2021). https://doi.org/10.1007/s00542-020-05207-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-05207-8

Navigation