Skip to main content
Log in

Automated manipulation of zebrafish embryos using an electrothermal microgripper

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

We present the first report on automated micro-manipulation of zebrafish embryos using an electrothermally-actuated microgripper. A five-bar linkage compliant microgripper, driven by a V-shaped electrothermal micro-actuator, is designed based on topological optimization. The electrothermally-actuated microgripper is fabricated, tested, and then integrated into a robotic micromanipulation system. The semi-automated manipulation of a single zebrafish embryo, as well as a series of comparison experiments, is carried out. Experimental results demonstrate that the microgripper has reliable capability of picking, moving, holding and releasing the zebrafish embryo. Specifically, it performs fairly well in immobilizing and limiting the excessive deformation of the embryo. Finally, based on teaching, the whole process of zebrafish embryo microinjection is programed and performed automatically, thus demonstrating great strengths and performance of the microgripper in zebrafish embryo micro-manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adamson KI, Sheridan E, Grierson AJ (2018) Use of zebrafish models to investigate rare human disease. J Med Genet 55:641–649

    Article  Google Scholar 

  • Argenton F, Bitzur S, Yarden A (2007) An inexpensive and easy microinjection embryo-tray. Zebrafish book 5th edition

  • Chen T, Wang Y, Yang Z, Liu H, Liu J, Sun L (2017) A PZT actuated triple-finger gripper for multi-target micromanipulation. Micromachines 8(2):33

    Article  Google Scholar 

  • Chu J, Zhang R, Chen Z (2011) A novel SU-8 electrothermal microgripper based on the type synthesis of the kinematic chain method and the stiffness matrix method. J Micromech Microeng 21(5):054030

    Article  Google Scholar 

  • Chung SE, Dong X, Sitti M (2015) Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper. Lap Chip 15(7):1667–1676

    Article  Google Scholar 

  • Despa V, Catangiu A, Ivan IA, Gurgu V, Ardeleanu M (2014) Modeling and control of a microgripper based on electromagnetic actuation. Sci Bull Valahia Univ Mater Mech 9:131–136

    Google Scholar 

  • Gaafar E, Zarog M (2017) A low-stress and low temperature gradient microgripper for biomedical applications. Microsyst Technol 23(12):5415–5422

    Article  Google Scholar 

  • Hatta K, Tsujii H, Omura T (2006) Cell tracking using a photoconvertible fluorescent protein. Nat Protoc 1(2):960–967

    Article  Google Scholar 

  • Hogan BM, Verkade H, Lieschke GJ, Health JK (2008) Manipulation of gene expression during zebrafish embryonic development using transient approaches. Methods Mol Biol 469:273–300

    Article  Google Scholar 

  • Huang H, Sun D, Mills JK, Li J, Cheng SH (2009) Visual-based impedance control of out-of-plane cell injection systems. IEEE Trans Autom Sci Eng 6:565–571

    Article  Google Scholar 

  • Huang H, Mills JK, Sun D (2011) A universal piezo-driven ultrasonic cell microinjection system. Biomed Microdevices 13:743–752

    Article  Google Scholar 

  • Johnson W, Dai C, Liu J, Wang X, Luu DK, Zhang Z, Ru C, Zhou C, Tan M, Pu H (2018) A flexure-guided piezo drill for penetrating the zona pellucida of mammalian oocytes. IEEE Tran Biomed Eng 65:678–686

    Article  Google Scholar 

  • Jonathan NR, Michael FS, John DM (2009) Microinjection of zebrafish embryos to analyze gene function. J Vis Exp 25:1115

    Google Scholar 

  • Kim DH, Sun Y, Yun S, Kim B, Hwang CN, Nelson B, Lee SH (2004) Mechanical property characterization of the zebrafish embryo chorion. Conf Proc IEEE Eng Med Biol Soc 7:5061–5064

    Google Scholar 

  • Kimura Y, Yanagimachi R (1995) Intracytoplasmic sperm injection in the mouse. Biol Reprod 52:709–720

    Article  Google Scholar 

  • Lu Z, Chen P, Nam J, Ge R, Lin W (2007) A micromanipulation system with dynamic force-feedback for automatic batch microinjection. J Micromech Microeng 17(2):314–321

    Article  Google Scholar 

  • Murphey RD, Zon LI (2006) Small molecule screening in the zebrafish. Methods 39(3):255–261

    Article  Google Scholar 

  • Parng C, Seng WL, Semino C, McGrath P (2002) Zebrafish: a preclinical model for drug screening. Assay Drug Dev Technol 1(1 Pt 1):41–48

    Article  Google Scholar 

  • Pitchar A, Rajaretinam RK, Freeman JL (2019) Zebrafish as an emerging model for bioassay-guided natural product drug discovery for neurological disorders. Medicines (Basel) 6(2): 6020061(20 pp)

  • Qu J, Zhang W, Jung A, Silva-Da CS, Liu X (2016) Microscale compression and shear testing of soft material using an MEMS microgripper with two-axis actuators and force sensors. IEEE Trans Autom Sci Eng 14(2):834–843

    Article  Google Scholar 

  • Ren J, Liu S, Cui C, Ten D (2017) Invasive behavior of breast cancer cells in embryonic zebrafish. J Vis Exp 122:e55459 (9 pp)

  • Ruiz D, Sigmund O (2018) Optimal design of robust piezoelectric microgrippers undergoing large displacements. Struct Multidiscip Optim 57(1):71–82

    Article  MathSciNet  Google Scholar 

  • Saleem S, Kannan RR (2018) Zebrafish: an emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov 4:45

    Article  Google Scholar 

  • Samaee SM, Nikkhah H, Varga ZM, Rezaei B (2017) A simple and inexpensive microinjection system for zebrafish embryos and larvae. Zebrafish 14(6):581–585

    Article  Google Scholar 

  • Soma A, Iamoni S, Voicu R, Muller R (2017) Design and experimental testing of an electro-thermal microgripper for cell manipulation. Microsyst Technol 24(1):1–8

    Google Scholar 

  • Sophia S, Nadia K, Reinhold H, Ulrike K (2014) Microinjection into zebrafish embryos (Danio rerio). Environ Sci Eur 26(1):1–8

    Article  Google Scholar 

  • Velosa-Moncada L, Aguilera-Cortes L, Gonzalez-Palacios M, Raskin JP, Herrera-May AL (2018) Design of a novel MEMS microgripper with rotatory electrostatic comb-drive actuators for biomedical applications. Microsyst Technol 18(5):1664

    Google Scholar 

  • Verotti M, Dochshanov A, Belfiore N P (2017) A comprehensive survey on microgrippers design: mechanical structure. J Mech Des 139(6):060801 (26 pp)

  • Voicu RC (2016) Design, numerical simulation and experimental investigation of an SU-8 microgripper based on the cascaded V-shaped electrothermal actuators. J Phys Conf Ser 757(1):012015

    Article  Google Scholar 

  • Wang W, Liu X, Sun Y (2007) Autonomous zebrafish embryo injection using a microrobotic system. In: 2007 IEEE international conference on automation science and engineering, AZ USA, September 22–25

  • Wang W, Liu X, Gelinas D, Ciruna B, Sun Y (2007b) A fully automated robotic system for microinjection of zebrafish embryos. PLoS One 2(9):e862

    Article  Google Scholar 

  • Wang W, Liu X, Sun Y (2009) High-throughput automated injection of individual biological cells. IEEE Trans Autom Sci Eng 6(2):209–219

    Article  Google Scholar 

  • Xie Y, Sun D, Liu C, Tse HY, Cheng SH (2010) A force control approach to a robot-assisted cell microinjection system. Int J Robot Res 29(9):1222–1232

    Article  Google Scholar 

  • Xin Y, Duan C (2018) Microinjection of antisense porpholinos, CRISPR/Cas9 RNP, and RNA/DNA into zebrafish embryos. Methods Mol Biol 1742:205–211

    Article  Google Scholar 

  • Zhang R, Chu J, Liu S, Zhang C (2010) Design and size optimization of compliant electrothermal microgripper. Chin Mech Eng 21(17):2028–2033

    Google Scholar 

  • Zhang X, Lu Z, Gelinas D, Ciruna B, Sun Y (2011) Batch transfer of zebrafish embryos into multiwall plates. IEEE Trans Autom Sci Eng 8(3):625–632

    Article  Google Scholar 

  • Zhang Z, Yu Y, Liu X, Zhang X (2015a) A comparison model of V- and Z-shaped electrothermal microactuators. 2015 IEEE international conference on mechatronics and automation, August. Beijing, China, pp 2–5

    Google Scholar 

  • Zhang Z, Yu Y, Liu X, Zhang X (2015b) Experimental study on the life and nonlinear actuation behaviors of V-shaped SU-8 electrothermal microactuators. 2018 IEEE 14th international conference on control and automation, June. Anchorage, AK, pp 12–15

    Google Scholar 

  • Zhang Z, Yu Y, Zhang X (2017a) Vibration analysis of U-shaped beam electrothermal microactuators. 2017 2nd international conference on cybernetics, robotics and control, July 21–23. Chengdu, China, pp 80–84

    Chapter  Google Scholar 

  • Zhang Z, Yu Y, Liu X, Zhang X (2017b) Dynamic modelling and analysis of V- and Z-shaped electrothermal microactuators. Microsyst Technol 23(8):3775–3789

    Article  Google Scholar 

  • Zhang Z, Zhang W, Wu Q, Yu Y, Liu X, Zhang X (2017c) Closed-form modelling and design analysis of V- and Z-shaped electrothermal microactuators. Micromech Microeng 27:015023 (12 pp)

  • Zhang Z, Yu Y, Zhang X (2018a) Experimental testing and performance comparisons between V- and Z-shaped electrothermal microactuators. In: Proceedings of 2018 IEEE international conference on mechatronics and automation, August 5–8, Changchun

  • Zhang Z, Yu Y, Zhang X (2018b) Theoretical modal analysis and parameter study of Z-shaped electrothermal microactuators. Microsyst Technol 24(7):3149–3160

    Article  Google Scholar 

  • Zhang Z, Yu Y, Zhang X (2018c) Vibration modes and parameter analysis of V-shaped electrothermal microactuators. Shock Vib 2018:1080652 (12 pp)

  • Zhao Y, Sun H, Sha X, Gu L, Zhan Z, Li W (2019) A review of automated microinjection of zebrafish embryos. Micromachines 10(7):10010007(26 pp)

  • Zhou S, Chen P, Lu Z, Hoo N, Luo H, Ge R, Ong C, Lin W (2010) Speed optimization for micropipette motion during zebrafish embryo microinjection. In: 2010 11th international conference on control automation robotics & vision, Singapore, December 7–10

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51575006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuping Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yu, Y., Song, P. et al. Automated manipulation of zebrafish embryos using an electrothermal microgripper. Microsyst Technol 26, 1823–1834 (2020). https://doi.org/10.1007/s00542-019-04728-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04728-1

Navigation