Skip to main content
Log in

Numerical and experimental analysis of cold gas microthruster geometric parameters by univariate and orthogonal method

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Microthruster has been playing significant role in micropropulsion system, of which micronozzle is the key component. In the present work, the geometric parameters of a typical micronozzle on a cold gas microthruster are first optimized using numerical univariate and orthogonal analysis combined with confirmation of thrust experiments. A 2 Dimension (2D) univariate numerical simulation, with only one geometric parameter varying within a large range during a simulation, is used to fully discuss the eight structural parameters of the proposed micronozzle. According to the effect of each parameter on the micronozzle performance, five critical factors, including half expansion angle θ out , expansion ratio W out /W t , throat width W t , throat radius of curvature R t , Inlet width W in and their corresponding proper levels range are selected. Then, a 2D orthogonal numerical simulation analysis is conducted utilizing an L 16(45) orthogonal table with the selected factors and levels. By analyzing the selected factors and levels simultaneously by range analysis method, the orders of significance of different factors are sorted and the optimum structural parameters are selected. The optimum result achieved in this study is identified as θ out of 15°, W t of 200 μm, W out /W t of 7, R t of 20 μm and W in of 4000 μm. Then, a 3 Dimension (3D) numerical simulation is conducted to predict and analyze the performance of the optimum microthruster when inlet pressure varies in three different values. When inlet pressure is 0.918 bar and temperature is 300 K, 3D simulation result shows that the microthruster using nitrogen as propellant can generate a thrust of 2.23 mN and efficiency of 72.14%. At last, an optimum cold gas microthruster adopting nitrogen gas as propellant is fabricated and tested. Experiment is conducted in three different inlet pressure. Results show that experimental values and simulation values are in agreement, which verifies the correctness of the simulation model. Under the inlet pressure of 0.918 bar and temperature of 300 K, the optimum microthruster can produce a thrust of 1.41 mN and efficiency of 52.84% when outlet pressure is set as 1000 Pa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anderson DJ (2003) Modern compressible flow: with historical perspective. McGraw-Hill Book Company, Boston

    Google Scholar 

  • Bayt (1999) Analysis, fabrication and testing of a MEMS-based micropropulsion system. Dissertation, Massachusetts Institute of Technology

  • Cheah KH, Chin JK (2011) Performance improvement on MEMS micropropulsion system through a novel two-depth micronozzle design. Acta Astronaut 69(1):59–70

    Article  Google Scholar 

  • Chen CC, Liu CW, Kan HC et al (2010) Simulation and experiment research on vaporizing liquid micro-thruster. Sens Actuators A 157:140–149

    Article  Google Scholar 

  • Chen H, Zhang Y, Zhang M et al (2013) Performance prediction of conical nozzle using Navier-Stokes computation. 49th AIAA/ASME/SAE/ASEE joint propulsion conference. doi:10.2514/6.2013-3733

  • Gagne KR, Hitt DL, McDevitt MR (2016) Development of an additively manufactured microthruster for nanosatellite applications. 54th AIAA aerospace sciences meeting, p 0963

  • Jon A, Donghoon L (2013) Computational prediction of the thrust characteristics of a small thruster at low pressure condition. 49th AIAA/ASME/SAE/ASEE joint propulsion conference. doi:10.2514/6.2013-3908

  • Juergen M (1997) Thruster options for microspacecraft—A review and evaluation of existing hardware and emerging technologies. 33rd joint propulsion conference and exhibit. doi:10.2514/6.1997-3058

  • Karthikeyan K, Chou SK, Khoong LE, Tan YM, Lu CW, Yang WM (2012) Low temperature co-fired ceramic vaporizing liquid microthruster for microspacecraft applications. Appl Energy 97:577–583

    Article  Google Scholar 

  • Kean How C, Kai Seng K, Choon Lai C, Jit Kai C (2011) Progress on development of Al2O3-SiO2 ceramic MEMS-based monopropellant micropropulsion system. 47th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit, doi:10.2514/6.2011-5923

  • Kim I, Lee JW, Choi MK, Kwon S (2011) Optimum nozzle angle of a micro solid-propellant thruster. Nanoscale Microscale Thermophys Eng 15(3):165–178

    Article  Google Scholar 

  • Lekholm V, Palmer K, Ericson F, Thornell G (2011) Ceramic cold gas microthruster with integrated flow sensor. PowerMEMS 2011:167–170

    Google Scholar 

  • Liu MH (2005) Numerical study on micronozzles. J Eng Thermophys

  • Ljubchenko FN, Fedenev AV, Chumakov AN, Bosak NA, Tarasenko VF, Panchenko AN (2008) Novel concept of laser-plasma microthruster design Proceedings of SPIE—The International Society for. Opt Eng 7005:700520

    Google Scholar 

  • Louisos WF, Hitt DL (2008) Viscous effects on performance of two-dimensional supersonic linear micronozzles. J Spacecr Rockets 45:706–715

    Article  Google Scholar 

  • Louisos W, Hitt DL (2012) Influence of wall heat transfer on supersonic micronozzle performance. J Spacecr Rockets 49:450–460

    Article  Google Scholar 

  • Louisos WF, Alexeenko AA, Hitt DL, Zilic A (2008) Design considerations for supersonic micronozzles. Int J Manuf Res 3(1):80–113

    Article  Google Scholar 

  • Miyakawa N, Legner W, Ziemann T, Telitschkin D, Fecht H-J, Friedberger A (2012) MEMS-based microthruster with integrated platinum thin film resistance temperature detector (RTD), heater meander and thermal insulation for operation up to 1,000 °C. Microsyst Technol 18:1077–1087. doi:10.1007/s00542-012-1441-0

    Article  Google Scholar 

  • Mueller J, Hofer R, Ziemer J (2010) Survey of propulsion technologies applicable to cubesats

  • Nathan GS, Stephen G, Xinfeng G (2013) A CFD Analysis of compressible flow through convergent-conical nozzles. 49th AIAA/ASME/SAE/ASEE joint propulsion conference. doi:10.2514/6.2013-3734

  • Piergentili F et al (2013) MEMS cold gas microthruster on Ursa Maior CubeSat. International Astronautical Federation

  • Pranajaya F, Cappelli M (2001) Development of a colloid micro-thruster for flight demonstration on the Emerald nanosatellite. 37th Joint propulsion conference and exhibit. doi:10.2514/6.2001-3330

  • Raitses Y, Fisch N, Ertmer K, Burlingame C (2000) A study of cylindrical hall thruster for low power space applications. 36th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit. doi:10.2514/6.2000-3421

  • Ru C et al (2016) Superior performance of a MEMS-based solid propellant microthruster (SPM) array with nanothermites. Microsyst Technol. doi:10.1007/s00542-016-3159-x

    Google Scholar 

  • Saad MA (1985) Compressible fluid flow. Prentice-Hall, New York

    Google Scholar 

  • Shen Q, Yuan WZ, Li XP, Hao YC (2013) A fully decoupled design method for MEMS microthruster based on orthogonal analysis. Transducers & eurosensors Xxvii: the international conference on solid-state sensors, actuators and microsystems, pp 2353–2356

  • Shen Q, Yuan W, Li X, Xie J, Chang H (2014) An orthogonal analysis method for decoupling the nozzle geometrical parameters of microthrusters. Microsyst Technol 21:1157–1166. doi:10.1007/s00542-014-2240-6

    Article  Google Scholar 

  • Shen Q, Yuan W, Xie J, Chang H (2015) A quantitative optimisation model for a horizontal MEMS solid propellant thruster with experimental verification. Microsyst Technol 22:847–859. doi:10.1007/s00542-015-2486-7

    Article  Google Scholar 

  • Xiong J, Zhou Z, Ye X, Wang X, Feng Y, Li Y (2002) A colloid micro-thruster system. Microelectron Eng 61–62:1031–1037

    Article  Google Scholar 

  • Zhang KL, Chou SK, Ang SS (2004) Development of a solid propellant microthruster with chamber and nozzle etched on a wafer surface. J Micromech Microeng 14:785–792. doi:10.1088/0960-1317/14/6/004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingbang Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Li, X., Zhou, J. et al. Numerical and experimental analysis of cold gas microthruster geometric parameters by univariate and orthogonal method. Microsyst Technol 23, 5003–5016 (2017). https://doi.org/10.1007/s00542-017-3451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3451-4

Navigation