Skip to main content
Log in

Effect of creep in RF MEMS static and dynamic behavior

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents the experimental characterization of the creep effect in electrostatically actuated gold microstructures. The tested specimens follow the typical configuration of the microbridge based radio frequency microelectromechanical systems switches and varactors. Initially, the plastic creep strain accumulation with time is measured for the specimens with different geometric dimensions and at different actuation voltages and temperatures. To avoid the size and cumulative heating effects, three specimens with the same geometric dimensions, actuation voltages and constant temperatures are tested. The test results allowed decoupling the permanent plastic strains due to the creep effect and reversible anelastic strains due to the viscoelastic behavior. The pull-in voltage and natural frequency values measured before and after the creep tests are compared, revealing the mechanical stiffness decrease caused by creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allameh SM (2003) An introduction to mechanical-properties-related issues in MEMS structures. J Mate Sci 38(20):4115–4123

    Article  Google Scholar 

  • Bergers LIJC, Hoefnagels JPM, Delhey NKR, Geers MGD (2011) Measuring time-dependent deformations in metallic MEMS. Microelectron Reliab 51(6):1054–1059

    Article  Google Scholar 

  • Brusa E, De Pasquale G, Somà A (2013) Experimental characterization of electro–thermo–mechanical coupling in gold RF microswitches. J Microelectromechanical Syst 22(4):919–929

    Article  Google Scholar 

  • Cho HS, Hemker KJ, Lian K, Goettert J (2002) Tensile, creep and fatigue properties of LIGA nickel structures. In: Micro electro mechanical systems, pp 439–442

  • De Pasquale G, Somà A (2009) Numerical and experimental validation of out-of-plane resonance closed formulas for MEMS suspended plates with square holes. Microsyst Technol 15(3):391–400

    Article  Google Scholar 

  • De Pasquale G, Somà A (2010) Dynamic identification of electrostatically actuated MEMS in the frequency domain. Mech Syst Signal Process 24(6):1621–1633

    Article  Google Scholar 

  • De Pasquale G, Somà A (2011) MEMS mechanical fatigue: effect of mean stress on gold microbeams. J Microelectromechanical Syst 20(4):1054–1063

    Article  Google Scholar 

  • Douglass MR (1998) Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD). In: Reliability physics symposium proceedings, pp 9–16

  • Hsu HH, Koslowski M, Peroulis D (2011) An experimental and theoretical investigation of creep in ultrafine crystalline nickel RF-MEMS devices. IEEE Trans Microw Theory Tech 59(10):2655–2664

    Article  Google Scholar 

  • Huang Y, Vasan ASS, Doraiswami R, Osterman M, Pecht M (2012) MEMS reliability review. IEEE Trans Device Mater Reliab 12(2):482–493

    Article  Google Scholar 

  • Jain A, Palit S, Alam MA (2012) A physics-based predictive modeling framework for dielectric charging and creep in RF MEMS capacitive switches and varactors. J Microelectromechanical Syst 21(2):420–430

    Article  Google Scholar 

  • Kal S, Bagolini A, Margesin B, Zen M (2006) Stress and resistivity analysis of electrodeposited gold films for MEMS application. Microelectron J 37(11):1329–1334

    Article  Google Scholar 

  • Langfelder G, Longoni A, Zaraga F, Corigliano A, Ghisi A, Merassi A (2009) A new on-chip test structure for real time fatigue analysis in polysilicon MEMS. Microelectron Reliab 49(2):120–126

    Article  MATH  Google Scholar 

  • Li G, Zhang W, Li P, Sang S, Hu J, Chen X (2013) Investigation of charge injection and relaxation in multilayer dielectric stacks for capacitive RF MEMS switch application. IEEE Trans Electron Devices 60(7):2379–2387

    Article  Google Scholar 

  • Margesin B, Bagolini A, Guarnieri V, Giacomozzi F, Faes A, Pal R, Decarli M (2003). Stress characterization of electroplated gold layers for low temperature surface micromachining. In: Design, test, integration and packaging of MEMS/MOEMS, pp 402–405

  • Modlinski R, Witvrouw A, Ratchev P, Puers R, den Toonder JMJ, De Wolf I (2004) Creep characterization of Al alloy thin films for use in MEMS applications. Microelectron Eng 76(1):272–278

    Article  Google Scholar 

  • Modlinski R, Ratchev P, Witvrouw A, Puers R, De Wolf I (2005) Creep-resistant aluminum alloys for use in MEMS. J Micromechanics Microengineering 15(7):S165

    Article  Google Scholar 

  • Rebeiz GM (2003) RF MEMS: theory, design and technology. Wiley, Hoboken

    Book  Google Scholar 

  • Scott S, Katz J, Sadeghi F, Peroulis D (2013) Highly reliable MEMS temperature sensors for 275 °C applications—part 2: creep and cycling performance. J Microelectromechanical Syst 22(1):236–243

    Article  Google Scholar 

  • Somà A, De Pasquale G (2009) MEMS mechanical fatigue: experimental results on gold microbeams. J Microelectromechanical Syst 18(4):828–835

    Article  Google Scholar 

  • Subhash G, Corwin AD, de Boer MP (2011) Evolution of wear characteristics and frictional behavior in MEMS devices. Tribol Lett 41(1):177–189

    Article  Google Scholar 

  • Tuck K, Jungen A, Geisberger A, Ellis M, Skidmore G (2005) A study of creep in polysilicon MEMS devices. J Eng Mater Technol 127(1):90–96

    Article  Google Scholar 

  • van Gils M, Bielen J, McDonald G (2007). Evaluation of creep in RF MEMS devices. In: Thermal, mechanical and multi-physics simulation experiments in microelectronics and micro-systems, pp 1–6

  • Vickers-Kirby DJ, Kubena RL, Stratton FP, Joyce RJ, Chang DT, Kim J (2000) Anelastic creep phenomena in thin metal plated cantilevers for MEMS. In: MRS proceedings, vol 657. pp EE2-5

  • Wetzig K (2003) Metal based thin films for electronics. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Yan X, Brown WL, Li Y, Papapolymerou J, Palego C, Hwang J, Vinci RP (2009) Anelastic stress relaxation in gold films and its impact on restoring forces in MEMS devices. J Microelectromechanical Syst 18(3):570–576

    Article  Google Scholar 

  • Younis MI, Jordy D, Pitarresi JM (2007) Computationally efficient approaches to characterize the dynamic response of microstructures under mechanical shock. J Microelectromechanical Syst 16(3):628–638

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Mubasher Saleem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somà, A., Saleem, M.M. & de Pasquale, G. Effect of creep in RF MEMS static and dynamic behavior. Microsyst Technol 22, 1067–1078 (2016). https://doi.org/10.1007/s00542-015-2469-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2469-8

Keywords

Navigation