Skip to main content
Log in

Ultra high aspect ratio penetrating metal microelectrodes for biomedical applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Studying the functioning of the brain through the use of penetrating microelectrodes has revolutionized our understanding of the brain and has the potential to treat physical conditions such as the aftermath of a stroke, disease or other neural problems. Cochlear implant electrodes have transformed the lives of people who were suffering from cochlear auditory disorders. However, limitations of manufacturing procedures restrict the choice of work materials to mostly silicon based materials, and biocompatibility issues have constrained the extensive use of these devices. Metal microelectrodes can absolve this limitation and enable extensive study of the neural centers. In this paper we report the fabrication of tungsten penetrating microelectrodes using electrochemical machining. Ultra high aspect ratio penetrating metal microelectrodes with diameters 10 μm and below, with surface roughness (Ra) values in the range of 300–500 nm, have been fabricated by electrochemical machining process. Details regarding the fabrication process and a mathematical model developed for the electrochemical machining process are discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ANSYS (2010) Help system, buckling analysis guide. ANSYS® Acad Res Rel 121

  • Bak M, Girvin J, Hambrecht F, Kufta C, Loeb G, Schmidt E (1990) Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput 28(3):257–259. doi:10.1007/bf02442682

    Article  Google Scholar 

  • Bhattacharyya B, Munda J, Malapati M (2004) Advancement in electrochemical micro-machining. Int J Mach Tools Manuf 44(15):1577–1589. doi:10.1016/j.ijmachtools.2004.06.006

    Article  Google Scholar 

  • Choi S, Ryu S, Choi D, Chu C (2007) Fabrication of WC micro-shaft by using electrochemical etching. Int J Adv Manuf Technol 31(7):682–687. doi:10.1007/s00170-005-0241-4

    Article  Google Scholar 

  • Droge MH, Gross GW, Hightower MH, Czisny LE (1986) Multielectrode analysis of coordinated, multisite, rhythmic bursting in cultured CNS monolayer networks. J Neurosci 6(6):1583

    Google Scholar 

  • Frazier AB, O’Brien DP, Allen MG (1993) Two dimensional metallic microelectrode arrays for extracellular stimulation and recording of neurons. In: Micro electro mechanical systems, 1993, MEMS ‘93, Proceedings an investigation of micro structures, sensors, actuators, machines and systems. IEEE pp 195–200

  • Grimes RG, Lewis JG, Simon HD (1994) A shifted block lanczos algorithm for solving sparse symmetric generalized eigenproblems. SIAM J Matrix Anal Appl 15(1):228–272

    Article  MathSciNet  MATH  Google Scholar 

  • HajjHassan M, Chodavarapu V, Musallam S (2008) NeuroMEMS: neural probe microtechnologies. Sensors 8(10):6704–6726

    Article  Google Scholar 

  • Howard MA III, Abkes BA, Ollendieck MC, Noh MD, Ritter C, Gillies GT (1999) Measurement of the force required to move a neurosurgical probe through in vivo human brain tissue. Biomed Eng IEEE Trans 46(7):891–894. doi:10.1109/10.771205

    Article  Google Scholar 

  • Jahan MP, Rahman M, Wong YS, Fuhua L (2010) On-machine fabrication of high-aspect-ratio micro-electrodes and application in vibration-assisted micro-electrodischarge drilling of tungsten carbide. Proc Inst Mech Eng Part B J Eng Manuf 224(5):795–814. doi:10.1243/09544054jem1718

    Article  Google Scholar 

  • Jain VK, Kalia S, Sidpara A, Kulkarni VN (2012) Fabrication of micro-features and micro-tools using electrochemical micromachining. Int J Adv Manuf Technol:1–9. doi:10.1007/s00170-012-4088-1

  • Jensen W, Yoshida K, Hofmann UG (2006) In vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex. Biomed Eng IEEE Trans 53(5):934–940. doi:10.1109/tbme.2006.872824

    Article  Google Scholar 

  • Lee K, Singh A, He J, Massia S, Kim B, Raupp G (2004) Polyimide based neural implants with stiffness improvement. Sens Actuators B Chem 102(1):67–72. doi:10.1016/j.snb.2003.10.018

    Article  Google Scholar 

  • Lim HS, Wong YS, Rahman M, Edwin Lee MK (2003) A study on the machining of high-aspect ratio micro-structures using micro-EDM. J Mater Process Technol 140(1–3):318–325. doi:10.1016/s0924-0136(03)00760-x

    Article  Google Scholar 

  • Mathew R, Sundaram MM (2012) Modeling and fabrication of micro tools by pulsed electrochemical machining. J Mater Process Technol 212(7):1567–1572. doi:10.1016/j.jmatprotec.2012.03.004

    Article  Google Scholar 

  • McCarthy PT, Otto KJ, Rao MP (2011) Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining. Biomed Microdev 13(3):503–515. doi:10.1007/s10544-011-9519-5

    Article  Google Scholar 

  • McGeough JA (1974) Principles of electrochemical machining. Chapman and Hall, London

    Google Scholar 

  • Moon T, Ghovanloo M, Kipke DR (2003) Buckling strength of coated and uncoated silicon microelectrodes, vol. 1942. In: Engineering in medicine and biology society, 2003. Proceedings of the 25th annual international Conference of the IEEE, pp 1944–1947. doi:10.1109/iembs.2003.1279821

  • Najafi K, Ji J, Wise KD (1990) Scaling limitations of silicon multichannel recording probes. Biomed Eng IEEE Trans 37(1):1–11

    Article  Google Scholar 

  • Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10(3):229–258. doi:10.1111/j.1085-9489.2005.10303.x

    Article  Google Scholar 

  • Nicolelis MAL, Shuler M (2001) Chapter 7 Thalamocortical and corticocortical interactions in the somatosensory system. In: Nicolelis MAL (ed) Progress in brain research, vol 130. Elsevier, Amsterdam, pp 89–110

    Google Scholar 

  • Ohmori H, Katahira K, Naruse T, Uehara Y, Nakao A, Mizutani M (2007) Microscopic grinding effects on fabrication of ultra-fine micro tools. CIRP Ann Manuf Technol 56(1):569–572. doi:10.1016/j.cirp.2007.05.136

    Article  Google Scholar 

  • Patrick E, Sankar V, Rowe W, Yen SF, Sanchez JC, Nishida T (2008) Flexible polymer substrate and tungsten microelectrode array for an implantable neural recording system. In: IEEE, pp 3158–3161

  • Patrick E, Orazem ME, Sanchez JC, Nishida T (2011) Corrosion of tungsten microelectrodes used in neural recording applications. J Neurosci Methods 198(2):158–171. doi:10.1016/j.jneumeth.2011.03.012

    Article  Google Scholar 

  • Peuster M (2003) Biocompatibility of corroding tungsten coils: in vitro assessment of degradation kinetics and cytotoxicity on human cells. Biomaterials 24(22):4057–4061. doi:10.1016/s0142-9612(03)00274-6

    Article  Google Scholar 

  • Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148(1):1–18. doi:10.1016/j.jneumeth.2005.08.015

    Article  Google Scholar 

  • Rajurkar KP, Kozak J, Wei B, McGeough JA (1993) Study of pulse electrochemical machining characteristics. CIRP Ann Manuf Technol 42(1):231–234. doi:10.1016/s0007-8506(07)62432-9

    Article  Google Scholar 

  • Rajurkar KP, Zhu D, McGeough JA, Kozak J, De Silva A (1999) New developments in electro-chemical machining. CIRP Ann Manuf Technol 48(2):567–579. doi:10.1016/s0007-8506(07)63235-1

    Article  Google Scholar 

  • Rousche PJ, Pellinen DS, Pivin DP Jr, Williams JC, Vetter RJ, kirke DR (2001) Flexible polyimide-based intracortical electrode arrays with bioactive capability. Biomed Eng IEEE Trans 48(3):361–371. doi:10.1109/10.914800

    Article  Google Scholar 

  • Schuster R, Kirchner V, Allongue P, Ertl G (2000) Electrochemical micromachining. Science 289(5476):98–101. doi:10.1126/science.289.5476.98

    Article  Google Scholar 

  • Schwartz MS, Otto SR, Shannon RV, Hitselberger WE, Brackmann DE (2008) Auditory brainstem implants. Neurotherapeutics 5(1):128–136. doi:10.1016/j.nurt.2007.10.068

    Article  Google Scholar 

  • Spelman FA (1999) The past, present, and future of cochlear prostheses. Eng Med Biol Mag IEEE 18(3):27–33

    Article  Google Scholar 

  • Staemmler L, Hofmann K, Kück H (2008) Hybrid tooling by a combination of high speed cutting and electrochemical milling with ultrashort voltage pulses. Microsyst Technol 14(2):249–254. doi:10.1007/s00542-007-0423-0

    Article  Google Scholar 

  • Sundaram MM, Rajurkar K (2010) Electrical and electrochemical processes. In: Intelligent energy field manufacturing. CRC Press, pp 173–212. doi:10.1201/EBK1420071016-c6

  • Szarowski DH, Andersen MD, Retterer S, Spence AJ, Isaacson M, Craighead HG, Turner JN, Shain W (2003) Brain responses to micro-machined silicon devices. Brain Res 983(1–2):23–35. doi:10.1016/s0006-8993(03)03023-3

    Article  Google Scholar 

  • Takahashi H, Suzurikawa J, Nakao M, Mase F, Kaga K (2005) Easy-to-prepare assembly array of tungsten microelectrodes. Biomed Eng IEEE Trans 52(5):952–956. doi:10.1109/tbme.2005.845224

    Article  Google Scholar 

  • Taniguchi N, Suzuki T, Mabuchi K Biocompatibility of wire electrodes improved by MPC polymer coating. In: Neural engineering, 2007. CNE ‘07. 3rd International conference on IEEE/EMBS, pp 122–125

  • Taylor SR, Gibbons DF (1983) Effect of surface texture on the soft tissue response to polymer implants. J Biomed Mater Res 17(2):205–227. doi:10.1002/jbm.820170202

    Article  Google Scholar 

  • Uhlmann E, Piltz S, Oberschmidt D (2008) Machining of micro rotational parts by wire electrical discharge grinding. Prod Eng 2(3):227–233. doi:10.1007/s11740-008-0094-4

    Article  Google Scholar 

  • Yaghi AH, Hyde TH, Becker AA, Sun W (2011) Finite element simulation of welded P91 steel pipe undergoing post-weld heat treatment. Sci Technol Weld Join 16 (Compendex):232–238

    Article  Google Scholar 

  • Zhang Z, Zhu D, Qu N, Wang M (2007) Theoretical and experimental investigation on electrochemical micromachining. Microsyst Technol 13(7):607–612. doi:10.1007/s00542-006-0369-7

    Article  Google Scholar 

Download references

Acknowledgments

Financial support provided by the National Science Foundation under Grant No CMMI–1120382, CBET-1239779 and by the University of Cincinnati under the URC Faculty Research Grant program is acknowledged. We thank Mr. Steve Volz of Carl Zeiss microscopy for the surface roughness measurement. The scanning electron microscopy facilities provided by the Advanced Material Characterization Center at the University of Cincinnati are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murali M. Sundaram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamaraj, A.B., Sundaram, M.M. & Mathew, R. Ultra high aspect ratio penetrating metal microelectrodes for biomedical applications. Microsyst Technol 19, 179–186 (2013). https://doi.org/10.1007/s00542-012-1653-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1653-3

Keywords

Navigation