Skip to main content
Log in

Laser micro-structuring of magnetron-sputtered SnOx thin films as anode material for lithium ion batteries

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

SnOx electrode thin films for lithium ion batteries were deposited by reactive and non-reactive rf magnetron sputtering of a SnO2 target in an argon–oxygen atmosphere. Amorphous and nano-crystalline SnOx films could be synthesized, with regard to the O2:Ar volume ratio in the sputter gas which was adjusted to 0, 3.5 or 10%. Laser micro-structuring using a KrF excimer laser operating at a wavelength of λ = 248 nm was applied to create free-standing microstructures. Thus, the active surface of the anode material was significantly increased. Furthermore, it was expected that the large volume changes during electrochemical cycling of SnOx could be better compensated by a microstructured surface. The laser parameters were optimized in a way which leads to structures without any defects and little debris. Depending on the laser fluence and pulse number, free-standing conical structures could be formed with a horizontal spacing of <0.5 μm up to 2 μm. The structured and unstructured thin films were cycled in a battery tester against metallic lithium. The structured SnOx thin films exhibited significantly better battery performance with respect to cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baggetto L, Niessen RAH, Roozeboom F, Notten PHL (2008) High energy density all-solid-state batteries: a challenging concept towards 3D integration. Adv Funct Mater 18:1057–1066. doi:10.1002/adfm.200701245

    Article  Google Scholar 

  • Brousse T, Defives D, Pasquereau L, Lee S, Herterich U, Schleich D (1997) Metal oxide anodes for Li-ion batteries. Ionics 3:332–337. doi:10.1007/BF02375707

    Article  Google Scholar 

  • Chiu K-F, Chen CC, Lin KM, Lin HC, Lo CC, Ho WH, Jiang CS (2010) Modification of sputter deposited solid-state electrolyte thin films. Vacuum 84:1296–1301. doi:10.1016/j.vacuum.2010.02.006

    Article  Google Scholar 

  • Chopra KL, Major S, Pandya DK (1983) Transparent conductors—a status review. Thin Solid Films 102:1–46. doi:10.1016/0040-6090(83)90256-0

    Article  Google Scholar 

  • Courtney IA, Dahn JR (1997) Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J Electrochem Soc 144:2045–2052. doi:10.1149/1.1837740

    Article  Google Scholar 

  • Dale RS, Rastomjee CS, Potter FH, Egdell RG, Tate TJ (1993) Sb and Bi implanted SnO2 thin-films—photoemission-studies and application as gas sensors. Appl Surf Sci 70–71:359–362. doi:10.1016/0169-4332(93)90458-N

    Article  Google Scholar 

  • Gordon RG, Proscia J, Ellis FB, Delahoy AE (1989) Textured tin oxide-films produced by atmospheric-pressure chemical vapor-deposition from tetramethyltin and their usefulness in producing light trapping in thin-film amorphous-silicon solar-cells. Sol Energy Mater 18:263–281. doi:10.1016/0165-1633(89)90042-7

    Article  Google Scholar 

  • Haines J, Leger JM (1997) X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure: relationships between structure types and implications for other rutile-type dioxides. Phys Rev B 55:11144–11154. doi:10.1103/PhysRevB.55.11144

    Article  Google Scholar 

  • Jiang JZ, Gerward L, Olsen JS (2001) Pressure induced phase transformation in nanocrystal SnO2. Scr Mater 44:1983–1986. doi:10.1016/S1359-6462(01)00819-3

    Article  Google Scholar 

  • Katiyar RS, Dawson P, Hargreav MM, Wilkinso GR (1971) Dynamics of rutile structure 3. Lattice dynamics, infrared and Raman spectra of SnO2. J Phys C Solid State Phys 4:2421. doi:10.1088/0022-3719/4/15/027

    Article  Google Scholar 

  • Ketterer B, Vasilchina H, Seemann K, Ulrich S, Besser H, Pfleging W, Kaiser T, Adelhelm C (2008) Development of high power density cathode materials for Li-ion batteries. Int J Mater Res 99:1171–1176. doi:10.3139/146.101749

    Google Scholar 

  • Kobayashi H, Uebou Y, Ishida T, Tamura S, Mochizuki S, Mihara T, Tabuchi M, Kageyama H, Yamamoto Y (2001) Electrochemical property of tin oxide thin film by photo-CVD process. J Power Sour 97–98:229–231. doi:10.1016/S0378-7753(01)00663-2

    Article  Google Scholar 

  • Kohler R, Proell J, Ulrich S, Trouillet V, Indris S, Przybylski M, Pfleging W (2009) Laser-assisted structuring and modification of LiCoO2 thin films. In: Pfleging W, Washio K, Lu Y (eds) Proc SPIE 7202, SPIE, Bellingham, WA, pp 720207-1-720207-10

  • Kohler R, Bruns M, Smyrek P, Ulrich S, Przybylski M, Pfleging W (2010a) Laser annealing of textured thin film cathode material for lithium ion batteries. In: Pfleging W, Washio K, Lu Y (eds) Proc SPIE 7585, SPIE, Bellingham, WA, pp 75850O-1-75850O-11

  • Kohler R, Smyrek P, Ulrich S, Bruns M, Trouillet V, Pfleging W (2010b) Patterning and annealing of nanocrystalline LiCoO2 thin films. J Optoelectron Adv Mater 12:547–552

    Google Scholar 

  • Kuwata N, Kumar R, Toribami K, Suzuki T, Hattori T, Kawamura J (2006) Thin film lithium ion batteries prepared only by pulsed laser deposition. Solid State Ion 177:2827–2832. doi:10.1016/j.ssi.2006.07.023

    Article  Google Scholar 

  • Kwoka M, Ottaviano L, Waczynska N, Santucci S, Szuber J (2010) Influence of Si substrate preparation on surface chemistry and morphology of L-CVD SnO2 thin films studied by XPS and AFM. Appl Surf Sci 256:5771–5775. doi:10.1016/j.apsusc.2010.03.093

    Article  Google Scholar 

  • Lamelas FJ, Reid SA (1999) Thin-film synthesis of the orthorhombic phase of SnO2. Phys Rev B 60:9347–9352. doi:10.1103/PhysRevB.60.9347

    Article  Google Scholar 

  • Lee WH, Son HC, Reucroft PJ, Lee JG, Park JW (2001) Effect of working pressure on the electrochemical performance of thin film SnO2 microbattery anodes deposited by radio frequency magnetron sputtering. J Mater Sci Lett 20:39–41. doi:10.1023/A:1006754413365

    Article  Google Scholar 

  • Liu PY, Chen JF, Sun WD (2004) Characterizations of SnO2 and SnO2:Sb thin films prepared by PECVD. Vacuum 76:7–11. doi:10.1016/j.vacuum.2004.05.004

    Article  Google Scholar 

  • Maranchi JP, Hepp AF, Kumta PN (2005) LiCoO2 and SnO2 thin battery applications film electrodes for lithium-ion battery applications. Mater Sci Eng B Solid State Mater Adv Technol 116:327–340. doi:10.1016/j.mseb.2004.05.041

    Google Scholar 

  • Mohamedi M, Lee S-J, Takahashi D, Nishizawa M, Itoh T, Uchida I (2001) Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries. Electrochim Acta 46:1161–1168. doi:10.1016/S0013-4686(00)00702-7

    Article  Google Scholar 

  • Mukhamedshina DM, Beisenkhanov NB, Mit KA, Valitova IV, Botvin VA (2006) Investigation of properties of thin oxide films SnOx annealed in various atmospheres. Thin Solid Films 495:316–320. doi:10.1016/j.tsf.2005.08.293

    Article  Google Scholar 

  • Nam SC, Yoon YS, Cho WI, Cho BW, Chun HS, Yun KS (2001) Enhancement of thin film tin oxide negative electrodes for lithium batteries. Electrochem Commun 3:6–10. doi:10.1016/S1388-2481(00)00136-3

    Article  Google Scholar 

  • Pfleging W, Baldus O (2006) Laser patterning and welding of transparent polymers for microfluidic device fabrication. In: Bachmann F, Hoving W, Lu Y, Washio K (eds) Proc SPIE 6107, SPIE, Bellingham, WA, pp 48-59

  • Pfleging W, Bruns M, Welle A, Wilson S (2007) Laser-assisted modification of polystyrene surfaces for cell culture applications. Appl Surf Sci 253:9177–9184. doi:10.1016/j.apsusc.2007.05.047

    Article  Google Scholar 

  • Pfleging W, Torge M, Bruns M, Trouillet V, Welle A, Wilson S (2009) Laser- and UV-assisted modification of polystyrene surfaces for control of protein adsorption and cell adhesion. Appl Surf Sci 255:5453–5457. doi:10.1016/j.apsusc.2008.08.053

    Article  Google Scholar 

  • Presley RE, Munsee CL, Park CH, Hong D, Wager JF, Keszler DA (2004) Tin oxide transparent thin-film transistors. J Phys D Appl Phys 37:2810–2813. doi:10.1088/0022-3727/37/20/006

    Article  Google Scholar 

  • Rue GH, Lee DS, Lee DD (2004) Effects of substrates on properties of tin oxide gas sensors. Jpn J Appl Phys 1 Regul Pap Short Notes Rev Pap 43:3493–3497. doi:10.1143/JJAP.43.3493

    Google Scholar 

  • Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sour 195:2419–2430. doi:10.1016/j.jpowsour.2009.11.048

    Article  Google Scholar 

  • Serventi AM, Rickerby DG, Horrillo MC, Saint-Jacques RG, Gutierrez J (1999) Transmission electron microscopy investigation of SnO2 thin films for sensor devices. Nanostruct Mater 11:813–819. doi:10.1016/S0965-9773(99)00371-2

    Article  Google Scholar 

  • Song J, Cai M-Z, Dong Q-F, Zheng M-S, Wu Q-H, Wu S-T (2009a) Structural and electrochemical characterization of SnOx thin films for Li-ion microbattery. Electrochim Acta 54:2748–2753. doi:10.1016/j.electacta.2008.11.026

    Article  Google Scholar 

  • Song J, Yang X, Zeng SS, Cai MZ, Zhang LT, Dong QF, Zheng MS, Wu ST, Wu QH (2009b) Solid-state microscale lithium batteries prepared with microfabrication processes. J Micromech Microeng 19:045004. doi:10.1088/0960-1317/19/4/045004

  • Tseng W-J, Shen P, Chen S-Y (2009) Fabrication and transformation of dense SnO2 via laser ablation condensation. J Phys Chem Solids 70:334–339. doi:10.1016/j.jpcs.2008.10.024

    Article  Google Scholar 

  • West WC, Whitacre JF, White V, Ratnakumar BV (2002) Fabrication and testing of all solid-state microscale lithium batteries for microspacecraft applications. J Micromech Microeng 12:58–62. doi:10.1088/0960-1317/12/1/309

    Article  Google Scholar 

  • Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50. doi:10.1016/S0013-4686(99)00191-7

    Article  Google Scholar 

  • Xia H, Tang SB, Lu L (2007) Thin film microbatteries prepared by pulsed laser deposition. J Korean Phys Soc 51:1055–1062. doi:10.3938/jkps.51.1055

    Article  Google Scholar 

  • Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sour 196:13–24. doi:10.1016/j.jpowsour.2010.07.020

    Article  Google Scholar 

  • Ziebert C, Ketterer B, Rinke M, Adelhelm C, Ulrich S, Zum Gahr K-H, Indris S, Schimmel T (2010) Constitution, microstructure, and battery performance of magnetron sputtered Li–Co–O thin film cathodes for lithium-ion batteries as a function of the working gas pressure. Corrected Proof. doi:10.1016/j.surfcoat.2010.07.110

Download references

Acknowledgments

We are indebted to Markus Beiser for his support in SEM. We gratefully acknowledge the financial support by the Federal Ministry for Education and Research (BMBF) in the BMBF-project 03SF0344A “Li-ion battery cells based on novel nanocomposite materials” (LIB-NANO) in the framework of “Lithium-Ion Battery LIB-2015” and by the Helmholtz program NANOMIKRO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Pfleging.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohler, R., Besser, H., Hagen, M. et al. Laser micro-structuring of magnetron-sputtered SnOx thin films as anode material for lithium ion batteries. Microsyst Technol 17, 225–232 (2011). https://doi.org/10.1007/s00542-011-1259-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-011-1259-1

Keywords

Navigation