Skip to main content
Log in

Magnetic actuator design for single-axis micro-gyroscopes

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

An innovative magnetically levitated system design is presented in this paper. The proof mass, used as the seismic detection components for gyroscopes, is levitated by the presented micro-coil actuator so that the concerns that mechanical fatigue, asymmetry and mis-alignments, which are inevitably present in the traditional mechanical springs design, can be ruled out. In addition, the limited range of dual-axis motion of the proof mass is completely relaxed and therefore the resolution and sensitivity of the gyroscope can be greatly upgraded. That is, the proof mass can be much at higher frequencies and the stroke of the sense-mode motion can be more enlarged, in comparison with the conventional design (i.e., mechanical springs). In addition, self-sensing technique is employed to replace the gap sensors which provide the feedback signal for position regulation of the proof mass, for the sake of cost-down for mass production. A sliding mode control strategy is included to account for the effects of nonlinearity of the maglev system dynamics and hysteresis uncertainty of the micro-coil actuator. The proposed controller is verified by computer simulations and experiments to illustrate its superior capability to stabilize the inherently unstable maglev system and ensure fast response for the lateral position regulation of the seismic proof mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Ayazi F, Najafi K (2001) A HARPSS polysilicon vibrating ring gyroscope. J Microelectromech Syst 10(2):169–179. doi:10.1109/84.925732

    Article  Google Scholar 

  • Baloh M, Tao G, Allaire P (1999) Adaptive estimation of magnetic bearing parameters. In: IEEE conference on control applications, Hawai’i, USA, pp 1193–1198

  • Bochobza DO, Seter DJ, Socher E, Nemirovsky Y (2000) Novel micromachined vibrating rate-gyroscope with optical sensing and electrostatic actuation. Sens Actuators A Phys 83(1):54–60. doi:10.1016/S0924-4247(00)00297-1

    Article  Google Scholar 

  • Clark WA, Howe RT, Horowitz R (1996) Surface micromachined Z-axis vibratory rate gyroscope. In: Technical digest. solid-state sensor and actuator workshop, Hilton Head Island, SC, USA, pp 283–287

  • David CM, Maslen EH, Noh MD (1996) Augmented circuit model for magnetic bearings including eddy currents, fringing, and leakage. IEEE Trans Magn 32(4):3219–3227. doi:10.1109/20.508385

    Article  Google Scholar 

  • Duan GR, Howe D (2003) Robust magnetic bearing control via eigenstructure assignment dynamical compensation. IEEE Trans Control Syst Technol 11(2):204–215. doi:10.1109/TCST.2003.809253

    Article  Google Scholar 

  • Eisenover C, Martinez DR (2005) Non linear dynamics of an electromagnetic suspension/levitation system. In: International conference on industrial electronics and control applications, Swissotel, Quito, Ecuador

  • Ford C et al (2000) Cavity element for resonant micro optical gyroscope. IEEE Aerosp Electron Syst Mag 15(2):33–36. doi:10.1109/62.891978

    Article  Google Scholar 

  • Hao Z, Ayazi F (2005) Thermoelastic damping in flexural-mode ring gyroscopes. In: Proceedings of the IEEE international conference on micro electro mechanical systems, Miami, FL, pp 335–343

  • He G, Najafi K (2002) A single-crystal silicon vibrating ring gyroscope. In: Proceedings of the IEEE micro electro mechanical systems, Las Vegas, Nevada, pp 718–721

  • Jeng JT (2000) Nonlinear adaptive inverse control for the magnetic bearing system. J Magn Magn Mater 209(1–3):186–188. doi:10.1016/S0304-8853(99)00683-6

    Article  Google Scholar 

  • Kao CK, Sinha A (1992) Coupled model sliding control of vibration in flexible structure. J Guid 15(1):65–72. doi:10.2514/3.20802

    Article  Google Scholar 

  • Kikuchi T et al (2005) Miniaturized quartz vibratory gyrosensor with hammer-headed arms. In: Proceedings of the 2004 IEEE international frequency control symposium and exposition, Montréal, Québec, pp 330–333

  • Lee JH et al (2003) Experimental study of sliding mode control for a benchmark magnetic bearing system and artificial heart pump suspension. IEEE Trans Control Syst Technol 11(1):128–138. doi:10.1109/TCST.2002.806457

    Article  Google Scholar 

  • Lin CE, Jou HL (1993) Force model identification for magnetic suspension systems via magnetic field measurement. IEEE Trans Instrum Meas 42(3):767–771. doi:10.1109/19.231612

    Article  Google Scholar 

  • Mazenc F, Queiroz MSD, Malisoff M, Gao F (2006) Further results on active magnetic bearing control with input saturation. IEEE Trans Control Syst Technol 14(5):914–919. doi:10.1109/TCST.2006.876910

    Article  Google Scholar 

  • Park KY, Lee CW, Oh YS, Cho YH (1998) Laterally oscillated and force-balanced micro vibratory rate gyroscope supported by fish-hook-shaped springs. Sens Actuators A Phys 64(1):69–76. doi:10.1016/S0924-4247(97)01656-7

    Article  Google Scholar 

  • Saukoski M, Aaltonen L, Halonen KAI (2007) Zero-rate output and quadrature compensation in vibratory MEMS gyroscopes. IEEE Sens J 7(2):1639–1651. doi:10.1109/JSEN.2007.908921

    Article  Google Scholar 

  • Seshia AA, Howe RT, Montague S (2002) An integrated microelectromechanical resonant output gyroscope. In: Proceedings of the IEEE micro electro mechanical systems, Las Vegas, Nevada, pp 722–726

  • Shearwood C, Hoa KY, Williams CB, Gonga H (2000) Development of a levitated micromotor for application as a gyroscope. Sens Actuators A Phys 83:85–92. doi:10.1016/S0924-4247(00)00292-2

    Article  Google Scholar 

  • Shearwood C et al (1995) Levitation of a micromachined rotor for application in a rotating gyroscope. Electron Lett 31(27):1845–1846. doi:10.1049/el:19951232

    Article  Google Scholar 

  • Srikantha PA et al (2006) Modal coupling in micromechanical vibratory rate gyroscopes. IEEE Sens J 6(5):1144–1152. doi:10.1109/JSEN.2006.881432

    Article  Google Scholar 

  • Sivrioglu S (2007) Adaptive control of nonlinear zero-bias current magnetic bearing system. Nonlinear Dyn 48(1–2):175–184. doi:10.1007/s11071-006-9081-5

    Article  Google Scholar 

  • Tsai N-C, Wu B-Y (2008) Nonlinear dynamics and control for single-axis gyroscope systems. Nonlinear Dyn 51:355–364. doi:10.1007/s11071-007-9216-3

    Article  MathSciNet  Google Scholar 

  • Wagner B, Benecke W (1990) Magnetically driven microactuators: design considerations, Microsystems Technologies 90, Springer Verlag

  • Wu X, Chen W, Zhao X, Zhang W (2006a) Development of a micromachined rotating gyroscope with electromagnetically levitated rotor. J Micromech Microeng 16:1993–1999. doi:10.1088/0960-1317/16/10/011

    Article  Google Scholar 

  • Wu XS, Chen WY, Zhao XL, Zhang WP (2006b) Micromachined rotating gyroscope with electromagnetically levitated rotor. Electron Lett 42(16):912–913. doi:10.1049/el:20061479

    Article  Google Scholar 

  • Yoshimoto T (1983) Eddy current effect in a magnetic bearing model. IEEE Trans Magn 19(5):2097–2099. doi:10.1109/TMAG.1983.1062684

    Article  Google Scholar 

  • Zhang WP et al (2006) The study of an electromagnetic levitating micromotor for application in a rotating gyroscope. Sens Actuators A Phys 132(2):651–657. doi:10.1016/j.sna.2006.03.002

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by National Science Council (Taiwan) with Grant NSC96-2629-E-006-002. The authors would like to express their appreciation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-Chyuan Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, NC., Huang, WM. & Chiang, CW. Magnetic actuator design for single-axis micro-gyroscopes. Microsyst Technol 15, 493–503 (2009). https://doi.org/10.1007/s00542-008-0769-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-008-0769-y

Keywords

Navigation