Skip to main content
Log in

Xenon computed tomography can evaluate the improvement of hepatic hemodynamics before and after endoscopic injection sclerotherapy

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Xenon computed tomography (Xe-CT) provides quantitative information on tissue blood flow (TBF). In the present study, Xe-CT was performed in patients with esophagogastric varices (EGV) before and after endoscopic injection sclerotherapy (EIS) to evaluate hepatic blood flow (HBF), hepatic arterial TBF (HATBF) and portal venous TBF (PVTBF).

Methods

Subjects comprised of 88 patients with EGV (49 men, 39 women, average age 65.8 ± 11.5 years, median age 68 years, 30–86 years) and liver cirrhosis related to either hepatitis C virus (C) (n = 33), hepatitis B virus (B) (n = 3), alcohol (AL) (n = 22), AL + C (n = 7), AL + B (n = 1), B + C + AL (n = 1), nonalcoholic steatohepatitis (NASH) (n = 4), autoimmune hepatitis (AIH) (n = 5), primary biliary cirrhosis (PBC) (n = 2), or cryptogenic (n = 10) were enrolled. All patients, who were enrolled in this study, were performed EIS for prophylaxis. Xe-CT and measurement of the retention rate of indocyanine green 15 min after administration (ICG R15) were performed before and after EIS. Total hepatic TBF (THTBF) and PVTBF/HATBF ratio (P/A) were also calculated.

Results

PVTBF, HATBF, THTBF, P/A and ICG R15 before EIS were 28.3 ± 8.91, 22.5 ± 14.4 and 50.8 ± 17.6 ml/100 ml/min, 1.62 ± 0.71 and 28.8 ± 12.7 %, respectively and those after EIS were 31.9 ± 10.0, 19.3 ± 11.6, and 51.2 ± 17.0 ml/100 ml/min, 1.92 ± 0.84 and 23.6 ± 11.3 %, respectively. PVTBF and P/A after EIS were significantly higher than those before EIS (p = 0.00444, p = 0.0179, respectively), and HATBF and ICG R15 after EIS were significantly lower than those before EIS (p = 0.00129, p < 0.001, respectively).

Conclusions

Xenon computed tomography showed that PVTBF increased after EIS for EGV and HATBF decreased in response to an increase in PVTBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Xe-CT:

Xenon computed tomography

TBF:

Tissue blood flow

EGV:

Esophagogastric varices

HBF:

Hepatic blood flow

HATBF:

Hepatic arterial tissue blood flow

PVTBF:

Portal venous tissue blood flow

THTBF:

Total hepatic tissue blood flow

P/A:

Portal venous tissue blood flow/hepatic arterial tissue blood flow ratio

CLD:

Chronic liver disease

LC:

Liver cirrhosis

B:

Hepatitis B virus

C:

Hepatitis C virus

AL:

Alcohol

NASH:

Nonalcoholic steatohepatitis

AIH:

Autoimmune hepatitis

PBC:

Primary biliary cirrhosis

EIS:

Endoscopic injection sclerotherapy

ICG R15:

The retention rate of indocyanine green 15 min after administration

US:

Ultrasonography

CT:

Computed tomography

MRI:

Magnetic resonance imaging

ROI:

Region of interest

References

  1. Gur D, Good WF, Wolfson SK Jr, Yonas H, Shabason L. In vivo mapping of local cerebral blood flow by xenon-enhanced computed tomography. Science. 1982;215:1267–8.

    Article  CAS  PubMed  Google Scholar 

  2. Leopold D, Zinreich SJ, Simon BA, Cullen MM, Marcucci C. Xenon-enhanced computed tomography quantifies normal maxillary sinus ventilation. Otolaryngol Head Neck Surg. 2000;122:422–4.

    CAS  PubMed  Google Scholar 

  3. Sase S, Suzuki M, Ikeda H, Takahashi H, Okuse N, Maeyama S, et al. Quantitative multilevel mapping of hepatic blood flow by xenon computed tomography using the aorta. J Comput Assist Tomogr. 2003;27:647–51.

    Article  PubMed  Google Scholar 

  4. Ikeda H, Suzuki M, Kobayashi M, Takahashi H, Matsumoto N, Maeyama S, et al. Xenon computed tomography shows hemodynamic change during the progression of chronic hepatitis C. Hepatol Res. 2007;37:104–12.

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi H, Suzuki M, Ikeda H, Kobayashi M, Sase S, Yotsuyanagi H, et al. Evaluation of quantitative portal venous, hepatic arterial and total hepatic tissue blood flow using Xenon CT in alcoholic liver cirrhosis-comparison with liver cirrhosis C. Alcohol Clin Exp Res. 2007;31:S43–8.

    Article  PubMed  Google Scholar 

  6. Kobayashi M, Suzuki M, Ikeda H, Takahashi H, Matsumoto N, Maeyama S, et al. Assessment of hepatic steatosis and hepatic tissue blood flow by xenon computed tomography in nonalcoholic steatohepatitis. Hepatol Res. 2009;39(1):31–9.

    Article  PubMed  Google Scholar 

  7. Takahashi H, Suzuki M, Ikeda H, Kobayashi M, Sase S, Yotsuyanagi H, et al. Evaluation of quantitative portal venous, hepatic arterial, and total hepatic tissue blood flow using xenon CT in alcoholic liver cirrhosis-comparison with liver cirrhosis related to Hepatitis C virus and nonalcoholic steatohepatitis. Alcohol Clin Exp Res. 2010;34:S7–13.

    Article  PubMed  Google Scholar 

  8. Sase S, Monden M, Oka H, Dono K, Fukuta T, Shibata I. Hepatic blood flow measurements with arterial and portal blood flow mapping in the human liver by means of xenon CT. J Comput Assist Tomogr. 2002;26:243–9.

    Article  PubMed  Google Scholar 

  9. Sase S, Takahashi H, Ikeda H, Kobayashi M, Matsumoto N, Suzuki M, et al. Determination of time-course change rate for arterial xenon using the time course of tissue xenon concentration in xenon-enhanced computed tomography. Med Phys. 2008;35:2331–8.

    Article  CAS  PubMed  Google Scholar 

  10. Shigefuku R, Takahashi H, Kobayashi M, Ikeda H, Matsunaga K, Okuse C, et al. Pathophysiological analysis of nonalcoholic fatty liver disease by evaluation of fatty liver changes and blood flow using xenon computed tomography: can early-stage nonalcoholic steatohepatitis be distinguished from simple steatosis? J Gastroenterol. 2012;47:1238–47.

    Article  CAS  PubMed  Google Scholar 

  11. Annet L, Materne R, Danse E, Jamart J, Horsmans Y, Van Beers BE. Hepatic flow parameters measured with MR imaging and Doppler US: correlations with degree of cirrhosis and portal hypertension. Radiology. 2003;229:409–14.

    Article  PubMed  Google Scholar 

  12. Bernatik T, Strobel D, Hahn EG, Becker D. Doppler measurements: a surrogate marker of liver fibrosis? Eur J Gastroenterol Hepatol. 2002;14:383–7.

    Article  PubMed  Google Scholar 

  13. Fujita Y, Watanabe M, Sasao K, Wakui N, Shinohara M, Ishii K, et al. Investigation of liver parenchymal flow using contrast-enhanced ultrasound in patients with alcoholic liver disease. Alcohol Clin Exp Res. 2004;28:S169–73.

    Article  Google Scholar 

  14. Hirata M, Kurose K, Minami H, Kumagi T, Akbar SM, Michitaka K, et al. Clinical characteristics of portal hemodynamics in alcoholic liver cirrhosis. Alcohol Clin Exp Res. 2004;28:S148–52.

    Article  Google Scholar 

  15. Chiandussi L, Greco F, Sardi G, Vaccarino A, Ferraris CM, Curti B. Estimation of hepatic arterial and portal venous blood flow by direct catheterization of the vena porta through the umbilical cord in humans. Preliminary results. Acta Hepatosplenol. 1968;15:166–71.

    CAS  PubMed  Google Scholar 

  16. Materne R, Smith AM, Peeters F, Dehoux JP, Keyeux A, Horsmans Y, et al. Assessment of hepatic perfusion parameters with dynamic MRI. Magn Reson Med. 2002;47:135–42.

    Article  CAS  PubMed  Google Scholar 

  17. Van Beers BE, Leconte I, Materne R, Smith AM, Jamart J, Horsmans Y. Hepatic perfusion parameters in chronic liver disease: dynamic CT measurements correlated with disease severity. Am J Roentgenol. 2001;176(3):667–73.

    Article  Google Scholar 

  18. Tajiri T, Yoshida H, Obara K, Onji M, Kage M, Kitano S, et al. General rules for recording endoscopic findings of esophagogastric varices (2nd edition). Dig Endosc. 2010;22(1):1–9.

    Article  PubMed  Google Scholar 

  19. Allen EM. Good clinical practice in Euroupe: investigator’s handbook. Romford: Essex; 1991. p. 73–6.

    Google Scholar 

  20. Visscher MB, Johnson JA. The Fick’s Principle: analysis of potential errors and its conventional applications. J Appl Physiol. 1953;5:535.

    Google Scholar 

  21. Bradley SE, Ingelfinger FJ, Bradley GP. Hepatic circulation in cirrhosis of the liver. Circulation. 1952;5:419–29.

    Article  CAS  PubMed  Google Scholar 

  22. Newby DE, Hayes PC. Hyperdynamic circulation in liver cirrhosis: not peripheral vasodilatation but ‘splanchnic steal’. QJM. 2002;95(12):827–30.

    Article  CAS  PubMed  Google Scholar 

  23. Richter S, Mucke I, Menger MD, Vollmar B. Impact of intrinsic blood flow regulation in cirrhosis: maintenance of hepatic arterial buffer response. Am J Physiol Gastrointest Liver Physiol. 2000;279:G454–62.

    CAS  PubMed  Google Scholar 

  24. Gulberg V, Haag K, Rossle M, Gerbes AL. Hepatic arterial buffer response in patients with advanced cirrhosis. Hepatology. 2002;35:630–4.

    Article  PubMed  Google Scholar 

  25. Witte CL, Witte MH, Krone CL. Contrasting hemodynamic patterns of portal hypertension. Ann Surg. 1972;176:68–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lautt WW, Greenway CV. Conceptual review of the hepatic vascular bed. Hepatology. 1987;7(5):952–63.

    Article  CAS  PubMed  Google Scholar 

  27. Tygstrup N, Winkler K, Mellemgaard K, Andreassen M. Determination of the hepatic arterial blood flow and oxygen supply in man by clamping the hepatic artery during surgery. J Clin Invest. 1962;41:447–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Sato N, Eguchi H, Inoue A, Matsumura T, Kawano S, Kamada T. Hepatic microcirculation in Zucker fatty rats. Adv Exp Med Biol. 1986;200:477–83.

    Article  CAS  PubMed  Google Scholar 

  29. Hayashi N, Kasahara A, Kurosawa K, Sasaki Y, Fusamoto H, Sato N, et al. Oxygen supply to the liver in patients with alcoholic liver disease assessed by organ-reflectance spectrophotometry. Gastroenterology. 1985;88(4):881–6.

    CAS  PubMed  Google Scholar 

  30. Hayashi N, Kasahara A, Kurosawa K, Yoshihara H, Sasaki Y, Fusamoto H, et al. Hepatic hemodynamics in alcoholic liver injuries assessed by reflectance spectrophotometry. Alcohol. 1985;2(3):453–6.

    Article  CAS  PubMed  Google Scholar 

  31. Kasahara A, Hayashi N, Kurosawa K, Sasaki Y, Sato N, Kamada T. Hepatic hemodynamics and oxygen consumption in alcoholic fatty liver assessed by organ-reflectance spectrophotometry and the hydrogen clearance method. Hepatology. 1986;6(1):87–91.

    Article  CAS  PubMed  Google Scholar 

  32. Leung TM, Tipoe GL, Liong EC, Lau TY, Fung ML, Nanji AA. Endothelial nitric oxide synthase is a critical factor in experimental liver fibrosis. Int J Exp Pathol. 2008;89(4):241–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hernández-Guerra M, García-Pagán JC, Turnes J, Bellot P, Deulofeu R, Abraldes JG, et al. Ascorbic acid improves the intrahepatic endothelial dysfunction of patients with cirrhosis and portal hypertension. Hepatology. 2006;43(3):485–91.

    Article  PubMed  Google Scholar 

  34. Iwata K, Shijo H, Kamimura S, Uehara Y, Kitamura Y, Iida T, et al. Effects of esophageal varices obliteration by endoscopic variceal sclerotherapy on asialoscintigraphy and liver function test. Hepatol Res. 2002;22(1):45–51.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the technical assistants at the Imaging Center of St. Marianna University School of Medicine Hospital for their assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Takahashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, H., Suzuki, M., Shigefuku, R. et al. Xenon computed tomography can evaluate the improvement of hepatic hemodynamics before and after endoscopic injection sclerotherapy. J Gastroenterol 48, 1353–1361 (2013). https://doi.org/10.1007/s00535-013-0756-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-013-0756-7

Keywords

Navigation