Skip to main content

Advertisement

Log in

Mechanisms of pancreatic fibrosis and applications to the treatment of chronic pancreatitis

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Pancreatic stellate cells (PSCs) play a crucial role in pancreatic fibrogenesis in chronic pancreatitis and in the desmoplastic reaction of pancreatic cancer. When PSCs are stimulated by oxidative stress, ethanol and its metabolite acetaldehyde, and cytokines, the phenotype of quiescent fat-storing cells converts to myofibroblastlike activated PSCs, which then produce extracellular matrix, adhesion molecules, and various chemokines in response to cytokines and growth factors. Recent data suggest that PSCs have a phagocytic function. Plateletderived growth factor is a potent stimulator of PSC proliferation. Transforming growth factor β, activin A, and connective tissue growth factor also play a role in PSC-mediated pancreatic fibrogenesis through autocrine and paracrine loops. Following pancreatic damage, pathophysiological processes that occur in the pancreas, including pancreas tissue pressure, hyperglycemia, intracellular reactive oxygen species production, activation of protease-activated receptor 2, induction of cyclooxygenase 2, and bacterial infection play a role in sustaining pancreatic fibrosis through increased PSC proliferation and collagen production by PSCs. Targeting PSCs might be an effective therapeutic approach in chronic pancreatitis. Various substances including vitamin A, vitamin E, polyphenols, peroxisome proliferator-activated receptor γ ligands, and inhibitors of the renin-angiotensin system show great promise of being useful in the treatment of chronic pancreatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watari N, Hotta Y, Mabuchi Y. Morphological studies on a vitamin A-storing cell and its complex with macrophage observed in mouse pancreatic tissues following excess vitamin A administration. Okajima Folia Anat Jpn 1982;58:837–858.

    CAS  Google Scholar 

  2. Ikejiri N. The vitamin A-storing cells in the human and rat pancreas. Kurume Med J 1990;37:67–81.

    PubMed  CAS  Google Scholar 

  3. Kato Y, Inoue H, Fujiyama Y, Bamba T. Morphological identification and collagen synthesis of periacinar fibroblastoid cells isolated and cultured from rat pancreatic acini. J Gastroenterol 1996;31:565–571.

    Article  PubMed  CAS  Google Scholar 

  4. Saotome T, Inoue H, Fujiyama M, Fujiyama Y, Bamba T. Morphological and immunocytochemical identification of periacinar fibroblast-like cells derived from human pancreatic acini. Pancreas 1997;14:373–382.

    Article  PubMed  CAS  Google Scholar 

  5. Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA, et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 1998;43:128–133.

    Article  PubMed  CAS  Google Scholar 

  6. Bachem MG, Schneider E, Gross H, Weidenbach H, Schmidt RM, Menke A, et al. Identification, culture and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 1998;115:421–432.

    Article  PubMed  CAS  Google Scholar 

  7. Lardon J, Rooman I, Bouwens L. Nestin expression in pancreatic stellate cells and angiogenic endothelial cells. Histochem Cell Biol 2002;117:535–540.

    Article  PubMed  CAS  Google Scholar 

  8. Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, Wheeler MB, et al. Clonal identification multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 2004;22:1115–1124.

    Article  PubMed  CAS  Google Scholar 

  9. Buchholz M, Kestler HA, Holzmann K, Ellenrieder V, Schneiderhan W, Siech M, et al. Transcriptome analysis of human hepatic and pancreatic stellate cells: organ-specific variations of a common transcriptional phenotype. J Mol Med 2005;83:795–805.

    Article  PubMed  CAS  Google Scholar 

  10. Marrache F, Pendyala S, Bhagal G, Betz KS, Song Z, Wang TC. Role of bone marrow derived cells in experimental chronic pancreatitis. Gut 2008;57:1113–1120.

    Article  PubMed  CAS  Google Scholar 

  11. Apte MV, Haber PS, Darby SJ, Rodgers SC, McCaughan GW, Korsten MA, et al. Pancreatic stellate cells are activated by pro-inflammatory cytokines: implications for pancreatic fibrogenesis. Gut 1999;44:534–541

    Article  PubMed  CAS  Google Scholar 

  12. Haber PS, Keogh GW, Apte MV, Moran CS, Stewart NL, Crawford DHG, et al. Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. Am J Pathol 1999;155:1087–1095.

    PubMed  CAS  Google Scholar 

  13. Luttenberger T, Schmid-Kotsas A, Menke A, Siech M, Beger H, Adler G. Platelet-derived growth factors stimulate proliferation and extracellular matrix synthesis of pancreatic stellate cells: implications in pathogenesis of pancreatic fibrosis. Lab Invest 2000;80:47–55.

    Article  PubMed  CAS  Google Scholar 

  14. Schneider E, Schmid-Kotsas A, Zhao J, Weidenbach H, Schmid RM, Menke A, et al. Identification of mediators stimulating proliferation and matrix synthesis of rat pancreatic stellate cells. Am J Physiol 2001;281:C535–C543.

    Google Scholar 

  15. Jaster R, Sparmann G, Emmrich J, Liebe S. Extracellular signal regulated kinases are key mediators of mitogenic signals in rat pancreatic stellate cells. Gut 2002;51:579–584.

    Article  PubMed  CAS  Google Scholar 

  16. Mews P, Phillips P, Fahmy R, Korsten M, Pirola R, Wilson J, et al. Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis. Gut 2002;50:535–541.

    Article  PubMed  CAS  Google Scholar 

  17. McCarroll JA, Phillips PA, Kumar RK, Park S, Pirola RC, Wilson JS, et al. Pancreatic stellate cell migration: role of the phosphatidylinositol 3-kinase (PI3-kinase) pathway. Biochem Pharmacol 2004;67:1215–1225.

    Article  PubMed  CAS  Google Scholar 

  18. Andoh A, Takaya H, Saotome T, Shimada M, Hata K, Araki Y, et al. Cytokine regulation of chemokine (IL-8, MCP-1, and RANTES) gene expression in human pancreatic periacinar myofibroblasts. Gastroenterology 2000;119:211–219.

    Article  PubMed  CAS  Google Scholar 

  19. Gao R, Brigstock DR. Connective tissue growth factor (CCN2) in rat pancreatic stellate cell function: integrin α5β1 as a novel CCN2 receptor. Gastroenterology 2 2008;129:1019–1030.

    Article  Google Scholar 

  20. Gao R, Brigstock DR. A novel integrin a5b1 binding domain in module 4 of connective tissue growth factor (CCN2/CTCF) promotes adhesion and migration of activated pancreatic stellate cells. Gut 2006;55:856–862.

    Article  PubMed  CAS  Google Scholar 

  21. Van Laethen JL, Deviere J, Resibois A, Rickaert F, Vertongen P, Ohtani H, et al. Localization of transforming growth factor β1 and its latent binding protein in human chronic pancreatitis. Gastroenterology 1995;108:1873–1881.

    Article  Google Scholar 

  22. Slater SD, Williamson RCN, Foster CS. Expression of transforming growth factor-β1 in chronic pancreatitis. Digestion 1995;56:237–241.

    PubMed  CAS  Google Scholar 

  23. Ishihara T, Hayasaka A, Yamaguchi T, Kondo F, Saisho H. Immunohistochemical study of transforming growth factor-β1 matrix metalloproteinase-2,9, tissue inhibitors of metalloproteinase-1,2, and basement membrane components at pancreatic ducts in chronic pancreatitis. Pancreas 1998;17:412–418.

    Article  PubMed  CAS  Google Scholar 

  24. Satoh K, Shimosegawa T, Hirota M, Koizumi M, Toyota T. Expression of transforming growth factor β1 (TGFβ1) and its receptors in pancreatic duct cell carcinoma and in chronic pancreatitis. Pancreas 1998;16:468–474.

    Article  PubMed  CAS  Google Scholar 

  25. Shek EWT, Benyon RC, Walker FM, McCudden PR, Pender SLF, Williams EJ, et al. Expression of transforming growth factor-β by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am J Pathol 2002;160:1787–1798.

    PubMed  CAS  Google Scholar 

  26. Kruse ML, Hildebrand PB, Timke C, Folsch UR, Schmidt WE. TGFβ1 autocrine growth control in isolated pancreatic fibroblastoid cells/stellate cells in vitro. Regul Pept 2000;90:47–52.

    Article  PubMed  CAS  Google Scholar 

  27. Phillips PA, McCarroll JA, Park S, Wu MJ, Pirola R, Korsten M, et al. Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Gut 2003;52:275–282.

    Article  PubMed  CAS  Google Scholar 

  28. Masamune A, Kikuta K, Satoh M, Kume K, Shimosegawa T. Differential roles of signaling pathways for proliferation and migration of rat pancreatic stellate cells. Tohoku J Exp Med 2003;199:69–84.

    Article  PubMed  CAS  Google Scholar 

  29. Masamune A, Kikuta K, Satoh M, Satoh K, Shimosegawa T. Rho kinase inhibitors block activation of pancreatic stellate cells. Br J Pharmacol 2003;140:1292–1302.

    Article  PubMed  CAS  Google Scholar 

  30. Masamune A, Satoh M, Kikuta K, Suzuki N, Shimosegawa T. Endothelin-1 stimulates contraction and migration of rat pancreatic stellate cells. World J Gastroenterol 2005;11:6144–6151.

    PubMed  CAS  Google Scholar 

  31. Masamune A, Satoh M, Kikuta K, Suzuki N, Shimosegawa T. Activation of JAK-STAT pathway is required for platelet-derived growth factor-induced proliferation of pancreatic stellate cells. World J Gastroenterol 2005;11:3385–3391.

    PubMed  CAS  Google Scholar 

  32. Phillips PA, Wu MJ, Kumar RK, Doherty E, McCarroll JA, Park S, et al. Cell migration: a novel aspect of pancreatic stellate cell biology. Gut 2003;52:677–682.

    Article  PubMed  CAS  Google Scholar 

  33. Ohnishi H, Miyata T, Yasuda H, Satoh Y, Hanatsuka K, Kita H, et al. Distinct roles of Smad2-, Smad3-, and ERK-dependent pathways in transforming growth factor-β1 regulation of pancreatic stellate cellular function. J Biol Chem 2004;279:8873–8878.

    Article  PubMed  CAS  Google Scholar 

  34. Aoki H, Ohnishi H, Hama K, Ishijima T, Satoh Y, Hanatsuka K, et al. Autocrine loop between TGF-β1 and IL-1β through Smad3-and ERK-dependent pathways in rat pancreatic stellate cells. Am J Physiol Cell Physiol 2006;290:C1100–C1108.

    Article  PubMed  CAS  Google Scholar 

  35. Aoki H, Ohnishi H, Hama K, Shinozaki S, Kita H, Yamamoto H, et al. Existence of autocrine loop between interleukin −6 and transforming growth factor-β1 in activated rat pancreatic stellate cells. J Cell Biochem 2006;99:221–228.

    Article  PubMed  CAS  Google Scholar 

  36. Ohnishi N, Miyata T, Ohnishi H, Yasuda H, Tamada, K, Ueda N, et al. Activin A is an autocrine activation of rat pancreatic stellate cells: potential therapeutic role of follistatin for pancreatic fibrosis. Gut 2003;52:1487–1493.

    Article  PubMed  CAS  Google Scholar 

  37. Apte MV, Phillips PA, Fahmy RG, Darby SJ, Rodgers SC, McCaughan GW, et al. Does alcohol directly stimulate pancreatic fibrogenesis? Studies with rat pancreatic stellate cells. Gastroenterology 2000;118:780–794.

    Article  PubMed  CAS  Google Scholar 

  38. Masamune A, Kikuta K, Satoh M, Satoh A, Shimosegawa T. Alcohol activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells. J Pharmacol Exp Ther 2002;302:36–72.

    Article  PubMed  CAS  Google Scholar 

  39. McCarroll JA, Phillips PA, Park S, Doherty E, Pirola RC, Wilson JS, et al. Pancreatic stellate cell activation by ethanol and acetaldehyde: is it mediated by the mitogen-activated protein kinase signaling pathway? Pancreas 2003;27:150–160.

    Article  PubMed  CAS  Google Scholar 

  40. Watanabe S, Nagashio Y, Asaumi H, Nomiyama Y, Taguchi M, Tashiro M, et al. Pressure activates rat pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2004;287:G1175–G1181.

    Article  PubMed  CAS  Google Scholar 

  41. Nomiyama Y, Tashiro M, Yamaguchi T, Watanabe S, Taguchi M, Asaumi H, et al. High glucose activates rat pancreatic stellate cells through protein kinase C and p38 mitogen-activated protein kinase pathway. Pancreas 2007;34:364–372.

    Article  PubMed  CAS  Google Scholar 

  42. Hong OK, Lee SH, Rhee M, Ko SH, Cho JH, Choi YH, et al. Hyperglycemia and hyperinsulinemia have additive effects on activation and proliferation of pancreatic stellate cells: possible explanation of islet-specific fibrosis in type 2 diabetes mellitus. J Cell Biochem 2007;101:665–675.

    Article  PubMed  CAS  Google Scholar 

  43. Masamune A, Watanabe T, Kikuta K, Satoh K, Shimosegawa T. NADPH oxidase plays a crucial role in the activation of pancreatic stellate cells. Am J Gastrointest Liver Physiol 2008;294:G99–G108.

    Article  CAS  Google Scholar 

  44. Masamune A, Kikuta K, Satoh M, Suzuki N, Shimosegawa T. Protease-activated receptor-2-mediated proliferation and collagen production of rat pancreatic stellate cells. J Pharmacol Exp Ther 2005;312:651–658.

    Article  PubMed  CAS  Google Scholar 

  45. Aoki H, Ohnishi H, Hama K, Shinozaki S, Kita H, Ogawa H, et al. Cyclooxygenase-2 is required for activated pancreatic stellate cells to respond to proinflammatory cytokines. Am J Physiol Cell Physiol 2007;292:C259–C268.

    Article  PubMed  CAS  Google Scholar 

  46. Yoshida S, Ujiki M, Ding XZ, Pelham C, Talamonti MS, Bell RH, et al. Pancreatic stellate cells (PSCs) express cyclooxygenase-2 (COX-2) and pancreatic cancer stimulates COX-2 in PSCs. Mol Cancer 2005;4:1–9.

    Article  CAS  Google Scholar 

  47. Schmid-Kotsas A, Gross HJ, Menke A, Weidenbach H, Adler G, Siech M, et al. Lipopolysaccharide-activated macrophages stimulate the synthesis of collagen type 1 and c-fibronectin in cultured pancreatic stellate cells. Am J Pathol 1999;155:1749–1758.

    PubMed  CAS  Google Scholar 

  48. Laine VJ, Nyman KM, Peuravuori HJ, Henriksen K, Parvinen M, Nevalainen TJ. Lipopolysaccharide induced apoptosis of rat pancreatic acinar cells. Gut 1996;38:747–754.

    Article  PubMed  CAS  Google Scholar 

  49. Vaccaro MJ, Calvo EI, Suburo AM, Sordelli DO, Lanosa G, Iovanna JI. Lipopolysaccharide directly affects pancreatic acinar cells implications on acute pancreatitis pathophysiology. Dig Dis Sci 2000;45:915–926.

    Article  PubMed  CAS  Google Scholar 

  50. Fortunato F, Deng X, Gates LK, McClain CJ, Bimmler D, Graf R, et al. Pancreatic response to endotoxin after chronic alcohol exposure: switch from apoptosis to necrosis. Am J Physiol Gastrointest Liver Physiol 2006;290:G232–G241.

    Article  PubMed  CAS  Google Scholar 

  51. Vonlaufen A, Xu Z, Daniel B, Kumar RK, Pirola R, Wilson J, et al. Bacterial endotoxin: a trigger factor for alcoholic pancreatitis? Evidence from a novel, physiologically relevant animal model. Gastroenterology 2007;133:1293–1303.

    Article  PubMed  CAS  Google Scholar 

  52. Masamune A, Kikuta K, Watanabe T, Satoh K, Satoh A, Shimosegawa T. Pancreatic stellate cells express Toll-like receptors. J Gastroenterol 2008;43:352–362.

    Article  PubMed  CAS  Google Scholar 

  53. McCarroll JA, Phillips PA, Santucchi N, Pirola RC, Wilson JS, Apte MV. Vitamin A inhibits pancreatic stellate cell activation: implications for treatment of pancreatic fibrosis. Gut 2006;55:79–89.

    Article  PubMed  CAS  Google Scholar 

  54. Jaster R, Hilgendofl I, Fitzner B. Brock P, Sparmann G, Emmrich J, et al. Regulation of pancreatic stellate cell function in vitro: biological and molecular effects of all-trans retinoic acid. Biochem Pharmacol 2003;66:633–641.

    Article  PubMed  CAS  Google Scholar 

  55. Rickmann M, Vaquero EC, Malagelada JR, Mokero X. Tocotrienols induce apoptosis and autophagy in rat pancreatic stellate cells through the mitochondrial death pathway. Gastroenterology 2007;132:2518–2532.

    Article  PubMed  CAS  Google Scholar 

  56. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990;347:645–650.

    Article  PubMed  CAS  Google Scholar 

  57. Shimizu K, Shiratori K, Hayashi N, Kobayashi M, Fujiwara T, Horikoshi H. Thiazolidinedione derivatives as novel therapeutic agents to prevent the development of chronic pancreatitis. Pancreas 2002;2:184–190.

    Article  Google Scholar 

  58. Shimizu K, Shiratori K, Kobayashi M, Kawamata H. Troglitazone inhibits the progression of chronic pancreatitis and the profibrogenic activity of pancreatic stellate cells via a PPARγ-independent mechanism. Pancreas 2004;29:67–74.

    Article  PubMed  CAS  Google Scholar 

  59. Hisada S, Shimizu K, Shiratori K, Kobayashi M. Peroxisome proliferators-activated receptor γ ligand prevents the development of chronic pancreatitis through modulating NF-κB-dependent proinflammatory cytokine production and pancreatic stellate cell activation. Annales Academiae Medicae Biolostocensis 2 2005;50:142–147.

    CAS  Google Scholar 

  60. Jia DM, Fukumitsu K, Tabaru A, Akiyama T, Otsuki M. Troglitazone stimulates pancreatic growth in congenitally CCK-A receptor-deficient OLETF rats. Am J Physiol Regulatory Integrative Comp Physiol 2001;280:R1332–R1340.

    CAS  Google Scholar 

  61. Van Westerloo DJ, Florquin S, deBoer AM, Daalhuisen J, de Vos AF, Bruno MJ, et al. Therapeutic effects of troglitazone in experimental chronic pancreatitis in mice. Am J Pathol 2005;166:721–728.

    PubMed  Google Scholar 

  62. Masamune A, Kikuta K, Satoh M, Sakai Y, Satoh A, Shimosegawa T. Ligands of peroxisome proliferators-activated receptor-γ block activation of pancreatic stellate cell. J Biol Chem 2002;277:141–147.

    Article  PubMed  CAS  Google Scholar 

  63. Jaster R, Lichte P, Fitzner B, Brock P, Glass A, Karopka T, et al. Peroxisome proliferators-activated receptor γ overexpression inhibits pro-fibrogenic activities of immortalized rat pancreatic stellate cells. J Cell Mol Med 2005;9:670–682.

    Article  PubMed  CAS  Google Scholar 

  64. Jiang C, Ting AT, Seed B. PPAR-g agonists inhibit production of monocyte inflammatory cytokines. Nature 1998;391:82–86.

    Article  PubMed  CAS  Google Scholar 

  65. Ricote M, Li AC, Willson TN, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 1998;391:79–82.

    Article  PubMed  CAS  Google Scholar 

  66. Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA, et al. A novel therapy for colitis utilizing PPARγ ligands to inhibit the epithelial inflammatory response. J Clin Invest 1999;104:383–389.

    Article  PubMed  CAS  Google Scholar 

  67. Leung PS, Chang HC, Fu LX, Wong PY. Localization of angiotensin II receptor subtype AT 1 and AT 2 in the pancreas of rodents. J Endocrinol 1997;153:269–274.

    Article  PubMed  CAS  Google Scholar 

  68. Tahmasebi M, Puddefoot JR, Inwang ER, Vinson GP. The tissue renin-angiotensin system in human pancreas. J Endocrinol 1999;161:317–322.

    Article  PubMed  CAS  Google Scholar 

  69. Leung PS, Carlsson PO. Tissue renin-angiotensin system: its expression, localization, regulation and potential role in the pancreas. J Mol Endocrinol 2000;166:121–128.

    Article  CAS  Google Scholar 

  70. Leung PS, Chan WP, Nobiling R. Regulated expression of pancreatic rennin-angiotensin system in experimental pancreatitis. Mol Cell Endocrinol 2000;166:121–128.

    Article  PubMed  CAS  Google Scholar 

  71. Kuno A, Yamada T, Masuda K, Ogawa K, Sogawa M, Nakamura S, et al. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology 2003;124:1010–1019.

    Article  PubMed  CAS  Google Scholar 

  72. Nagashio Y, Asaumi H, Watanabe S, Nomiyama Y, Taguchi M, Tashiro M, et al. Angiotensin II type I receptor interaction is a important regulator for the development of pancreatic fibrosis in mice. Am J Physiol Gastrointest Liver Physiol 2004;287:G170–G177.

    Article  PubMed  CAS  Google Scholar 

  73. Hama K, Ohnishi H, Yasuda H, Ueda N, Mashima H, Satoh Y, et al. Angiotensin II stimulates DNA synthesis of rat pancreatic stellate cells by activating ERK through EGF receptor transactivation. Biochem Biophys Res Commun 2004;315:905–911.

    Article  PubMed  CAS  Google Scholar 

  74. Hama K, Ohnishi H, Aoki H, Kita H, Yamamoto H, Osawa H, et al. Angiotensin II promotes the proliferation of activated pancreatic stellate cells by Smad7 induction through a protein kinase C pathway. Biochem Biophys Res Commun 2006;340:742–750.

    Article  PubMed  CAS  Google Scholar 

  75. Gibo J, Ito T, Kawabe K, Hisano T, Inoue M, Fujimori N, et al. Camostat mesilate attenuates pancreatic fibrosis via inhibition of monocytes and pancreatic stellate cells activity. Lab Invest 2005;85:75–89.

    PubMed  CAS  Google Scholar 

  76. Asaumi H, Watanabe S, Taguchi M, Tashiro M, Nagashio Y, Nomiyama Y, et al. Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits ethanol-induced activation of pancreatic stellate cells. Eur J Clin Invest 2006;36:113–122.

    Article  PubMed  CAS  Google Scholar 

  77. Masamune A, Suzuki N, Kikuta K, Satoh M, Satoh K, Shimosegawa T. Curcumin blocks activation of pancreatic stellate cells. J Cell Biol 2006;97:1080–1093.

    CAS  Google Scholar 

  78. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/ paracrine mechanisms involving TGF-β, PGE2, and PAF. J Clin Invest 1998;101:890–898.

    Article  PubMed  CAS  Google Scholar 

  79. Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest 2003;83:655–663.

    PubMed  CAS  Google Scholar 

  80. Kaiser AM, Saluja AK, Sengupta A, Saluja M, Steer ML. Relationship between severity, necrosis, and apoptosis in five models of experimental acute pancreatitis. Am J Physiol Cell Physiol 1995;269:C1295–C1304.

    CAS  Google Scholar 

  81. Shimizu K, Kobayashi M, Kahara J, Shiratori K. Cytokines and peroxisome proliferators-activated receptor γ ligand regulate phagocytosis by pancreatic stellate cells. Gastroenterology 2005;128:2105–2118.

    Article  PubMed  CAS  Google Scholar 

  82. Tahara J, Shimizu K, Shiratori K. Engulfment of necrotic acinar cells by pancreatic stellate cells inhibits pancreatic fibrogenesis. Pancreas 2008;37:69–74.

    Article  PubMed  Google Scholar 

  83. Shimizu K. Pancreatic stellate cells: molecular mechanism of pancreatic fibrosis. J Gastroenterol Hepatol 2008;23(Suppl 1):S119–S121.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, K. Mechanisms of pancreatic fibrosis and applications to the treatment of chronic pancreatitis. J Gastroenterol 43, 823–832 (2008). https://doi.org/10.1007/s00535-008-2249-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-008-2249-7

Key words

Navigation