Skip to main content
Log in

Vagotomy upregulates expression of the N-methyl-d-aspartate receptor NR2D subunit in the stomach

  • Alimmentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

N-methyl-d-aspartate (NMDA) receptor is the major excitatory neurotransmitter receptor in the central nervous system. Recent evidence has pointed to expression of NMDA receptor in peripheral non-neuronal tissues and organs; however, little is known about the expression of the receptor in the stomach. The present study identified what types of NMDA receptor subunits are expressed in the rat stomach and examined whether vagotomy affects their expression.

Methods

To see the expression and distribution of the mRNAs and proteins for the NMDA receptor subunits, real-time reverse transcription-polymerase chain reaction, Western blotting, in situ hybridization, and immunohistochemistry were carried out on rat stomach with and without vagotomy.

Results

Of the NMDA receptor subunits, NR1, NR2 (2A, 2B, 2C, 2D), and NR3 (3A, 3B), all NR subunit mRNAs except for the NR2B subunit mRNA were expressed in the intact rat stomach, with huge expression of NR2D mRNA. Expression of NR2D subunit mRNA and protein significantly increased after vagotomy. Increased expression was found in mucosal cells, the myenteric plexus, and the outer membrane of the stomach with vagotomy.

Conclusions

Vagotomy upregulates expression of the NR2D subunit in the stomach and therefore, the NR2D subunit may be implicated in gastric motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MacDonald JF, Jackson MF, Beazely MA. Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Crit Rev Neurobiol 2006;18:71–84.

    PubMed  CAS  Google Scholar 

  2. Duchen MR. Mitochondria and calcium: from cell signalling to cell death. J Physiol 2000;529:57–68.

    Article  PubMed  CAS  Google Scholar 

  3. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999;51;7–61.

    PubMed  CAS  Google Scholar 

  4. Chen PE, Wyllie DJ. Pharmacological insights obtained from structure-function studies of ionotropic glutamate receptors. Br J Pharmacol 2006;147:839–853.

    Article  PubMed  CAS  Google Scholar 

  5. Furukawa H, Singh SK, Mancysso R. Subunit arrangement and function in NMDA receptors. Nature 2005;438:185–192.

    Article  PubMed  CAS  Google Scholar 

  6. Perez IO, Schulteis CT, Contractor A. Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci 2001;1:1228–1237.

    Google Scholar 

  7. Hinoi E, Takarada T, Ueshima T. Glutamate signaling in peripheral tissues. Eur J Biochem 2004;271:1–13.

    Article  PubMed  CAS  Google Scholar 

  8. Skerry TM, Genever PG. Glutamate signaling in non-neuronal tissues. Trends Pharmacol Sci 2001;22:174–181.

    Article  PubMed  CAS  Google Scholar 

  9. Burns GA, Ritter RC. The non-competitive NMDA antagonist MK801 increased food intake in rats. Pharmacol Biochem Behav 1997;56:145–149.

    Article  PubMed  CAS  Google Scholar 

  10. Burns GA, Fleischmann LG, Ritter RC. MK801 interferes with nutrient-related signals for satiation. Appetite 1998;30:1–12.

    Article  PubMed  CAS  Google Scholar 

  11. Covasa M, Ritter RC. Reduction of food intake by intestinal macronutrient infusion is not reversed by NMDA receptor blockade. Am J Physiol Regul Integr Comp Physiol 2000;278:345–351.

    Google Scholar 

  12. Jahng JW, Houpt TA. MK801 increases feeding and decreases drinking in non deprived, freely feeding rats. Pharmacol Biochem Behav 2001;68:181–186.

    Article  PubMed  CAS  Google Scholar 

  13. Covasa M, Ritter RC, Burns GA. Cholinergic neurotransmission participates in increased food intake induced by NMDA receptor blockade. Am J Physiol Regul Integr Comp Physiol 2003;285:641–648.

    Google Scholar 

  14. Burns GA, Ritter RC. Visceral afferent participation in delayed satiation following NMDA receptor blockade. Physiol Behav 1998;65:361–365.

    Article  PubMed  CAS  Google Scholar 

  15. Berthoud H, Patterson LM, Morelale S. Additive satiety-delaying effects of capsaicin-induced visceral deafferentation and NMDA receptor blockade suggest separate pathways. Pharmacol Biochem Behav 2000;67:371–375.

    Article  PubMed  CAS  Google Scholar 

  16. Misra C, S.G. Brickly SG, Farrant M. Identification of subunits contributing to synaptic and extrasynaptic NMDA receptors in Golgi cell of the rat cerebellum. J Physiol 2000;524:147–162.

    Article  PubMed  CAS  Google Scholar 

  17. Rezvani K, Teng Y, Shim D, De Biasi M. Nicotine regulates multiple synaptic proteins by inhibiting proteasomal activity. J Neurosci 2007;27:10508–10519.

    Article  PubMed  CAS  Google Scholar 

  18. Hsieh CY, Leslie FM, Metherate R. Nicotine exposure during a postnatal critical period alters NR2A and NR2B mRNA expression in rat auditory forebrain. Brain Res Dev Brain Res 2002;133:19–25.

    Article  PubMed  CAS  Google Scholar 

  19. Krainc D, Bai G, Okamoto S, Carles M, Kusiak JW, Brent RN, et al. Synergistic activation of the N-methyl-d-aspartate receptor subunit 1 promoter by myocyte enhancer factor 2C and Sp1. J Biol Chem 1998;273:26218–26224.

    Article  PubMed  CAS  Google Scholar 

  20. Moroni F, Luzzi S, Franchi MS, Zilleti L. The presence of NMDA receptors for glutamic acid in the guinea pig myenteric plexus. Neurosci Lett 1986;68:57–62.

    Article  PubMed  CAS  Google Scholar 

  21. Luzzi S, Franchi MS, Zilleti L. Agonists, antagonists and modulators of excitatory amino acid receptors in the guinea-pig myenteric plexus. Br J Pharmacol 1988;95:1271–1277.

    PubMed  CAS  Google Scholar 

  22. Shannon HE, Sawyer BD. Glutamate receptors of the NMDA subtype in the myenteric plexus of the guinea pig ileum. J Pharmacol Exp Ther 1989;251:518–523.

    PubMed  CAS  Google Scholar 

  23. Wiley JW, Lu YX, Owyang C. Evidence for a glutamatergic neural pathway in the myenteric plexus. Am J Physiol 1991;261:693–700.

    Google Scholar 

  24. Gaudreatu GA, Plourde V. Involvement of N-methyl-d-aspartate (NMDA) receptors in a rat model of visceral hypersensitivity. Behav Brain Res 2004;150:185–189.

    Article  CAS  Google Scholar 

  25. Zhou Q, Caudle RM, Moshiree B. Phosphorylation of NMDA NR1 subunits in the myenteric plexus during TNBS induced colitis. Neurosci Lett 2006;406:250–255.

    Article  PubMed  CAS  Google Scholar 

  26. Tack J. Gastric motor and sensory function. Curr Opin Gastroenterol 2005;21:665–672.

    Article  PubMed  Google Scholar 

  27. Tack J. Gastric motor disorders. Best Pract Res Clin Gastroenterol 2007;21:633–644.

    Article  PubMed  CAS  Google Scholar 

  28. Ali T, Hasan M, Hamadani M, Harty RF. Gastroparesis. South Med J 2007;100:281–286.

    PubMed  Google Scholar 

  29. Camilleri M, Bueno L, de Ponti F, Fioramonti J, Lydiard RB, Tack J. Pharmacological and pharmacokinetic aspects of functional gastrointestinal disorders. Gastroenterology 2006;130:1421–1434.

    Article  PubMed  CAS  Google Scholar 

  30. Dong K, Yu XJ, Li B, Wen EG, Xiong W, Guan QL. Advances in mechanisms of postsurgical gastroparesis syndrome and its diagnosis and treatment. Chin J Dig Dis 2006;7:76–82.

    Article  PubMed  Google Scholar 

  31. Peeters TL. Potential of ghrelin as a therapeutic approach for gastrointestinal motility disorders. Curr Opin Pharmacol 2006;6:553–558.

    Article  PubMed  CAS  Google Scholar 

  32. Sanjeevi A. Gastricmotility. Curr Opin Gastroenterol 2007;23:625–630.

    Article  PubMed  Google Scholar 

  33. Camilleri M, Balm RK, Low PA. Autonomic dysfunction in patients with chronic intestinal pseudo-obstruction. Clin Auton Res 1993;3:95–100.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, K., Kanno, T., Oshima, T. et al. Vagotomy upregulates expression of the N-methyl-d-aspartate receptor NR2D subunit in the stomach. J Gastroenterol 43, 322–326 (2008). https://doi.org/10.1007/s00535-008-2163-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-008-2163-z

Key words

Navigation