Skip to main content
Log in

Fault kinematics and stress fields in the Rwenzori Mountains, Uganda

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Rwenzori Mountains in western Uganda form an active rift-transfer zone in the western branch of the East African Rift System. Here we quantify local stress fields in high resolution from field observations of fault structures to shed light on the complex, polyphase tectonics expected in transfer zones. We apply the multiple inverse method, which is optimized for heterogeneous fault-slip data, to the northern and central Rwenzori Mountains. Observations from the northern Rwenzori Mountains show larger heterogeneity than data from the central Rwenzori, including unexpected compressional features; thus the local stress field indicates polyphase transpressional tectonics. We suggest that transpression here is linked to rotational and translational movements of the neighboring Victoria block relative to the Rwenzori block that includes strong overprinting relationships. Stress inversions of data from the central Rwenzori Mountains indicate two distinct local stress fields. These results suggest that the Rwenzori block consists of smaller blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Angelier J (1990) Inversion of field data in fault tectonics to obtain the regional stress—III. A new rapid direct inversion method by analytical means. Geophys J Int 103:363–376

    Article  Google Scholar 

  • Bahat D, Mohr P (1987) Horst faulting in continental rifts. Tectonophysics 141(1–3):61–73. doi:10.1016/0040-1951(87)90174-0

    Article  Google Scholar 

  • Bauer FU, Glasmacher UA, Ring U, Schumann A, Nagudi B (2010) Thermal and exhumation history of the central Rwenzori Mountains, Western Rift of the East African Rift System, Uganda. Int J Earth Sci 99:1575–1597

    Article  Google Scholar 

  • Bauer FU, Glasmacher UA, Ring U, Karl M, Schumann A, Nagudi B (2013) Tracing the exhumation history of the Rwenzori Mountains, Albertine Rift, Uganda, using low-temperature thermochronology. Tectonophysics 599:8–28. doi:10.1016/j.tecto.2013.03.032

    Article  Google Scholar 

  • Bosworth W (1985) Geometry of propagating continental rifts. Nature 316:625–627

    Article  Google Scholar 

  • Bosworth W, Strecker MR, Blisniuk PM (1992) Integration of East African paleostress and present-day stress data: implications for continental stress field dynamics. J Geophys Res 97(B8):11851. doi:10.1029/90JB02568

    Article  Google Scholar 

  • Buck WR (2006) The role of magma in the development of the Afro-Arabian rift system. In: Yirgu G, Ebinger CJ, Maguire PKH (eds) The afar volcanic province within the East African rift system. Geological Society Special Publications, London, pp 43–54

    Google Scholar 

  • Calais E, Hartnady C, Ebinger C, Nocquet JM (2006) Kinematics of the East African Rift from GPS and earthquake slip vector data”. In: Yirgu G, Ebinger CJ, Maguire PKH (eds) Structure and evolution of the rift systems within the Afar volcanic province, Northeast Africa, vol 259. Geological Society Special Publications, London, pp 9–22

    Google Scholar 

  • Corti G, Calignano E, Petit C, Sani F (2011) Controls of lithospheric structure and plate kinematics on rift architecture and evolution: an experimental modeling of the Baikal rift. Tectonics 30(3):TC3011. doi:10.1029/2011TC002871

    Article  Google Scholar 

  • Delvaux D, Barth A (2010) African stress pattern from formal inversion of focal mechanism data. Tectonophysics 482:105–128

    Article  Google Scholar 

  • Delvaux D, Kervyn A, Macheyeki AS, Temu EB (2012) Geodynamic significance of the TRM segment in the East African Rift (W-Tanzania): active tectonics and paleostress in the Ufipa plateau and Rukwa basin. J Struct Geol 37:161–180

    Article  Google Scholar 

  • Ebinger CJ (1989) Tectonic development of the western branch of the East African rift system. Geol Soc Am Bull 101:885–903

    Article  Google Scholar 

  • Fernandes RMS, Miranda JM, Delvaux D, Stamps DS, Saria E (2013) Re-evaluation of the kinematics of Victoria Block using continuous GNSS data. Geophys J Int 193:1–10. doi:10.1093/gji/ggs071

    Article  Google Scholar 

  • Foster A, Francis N (1996) Comparisons between the rift systems of East Africa, Earth and Beta Regio, Venus. Earth Planet Sci Lett 143(1–4):183–195. doi:10.1016/0012-821X(96)00146-X

    Article  Google Scholar 

  • Homberg C, Hu JC, Angelier J, Bergerat F, Lacombe O (1996) Characterization of stress perturbations near major fault zones: insights from 2-D distinct-element numerical modelling and field studies (Jura Mountains). J Struct Geol 19:703–718

    Article  Google Scholar 

  • Horner-Johnson BC, Gordon RG, Cowles SM, Argus DF (2005) The angular velocity of Nubia relative to Somalia and the location of the Nubia–Somalia–Antarctica triple junction. Geophys J Int 162:221–238

    Article  Google Scholar 

  • Koehn D, Aanyu K, Haines S, Sachau T (2008) Rift nucleation, rift propagation and the creation of basement micro-plates within active rifts. Tectonophysics 458(1–4):105–116. doi:10.1016/j.tecto.2007.10.003

    Article  Google Scholar 

  • Koehn D, Lindenfeld M, Rümpker G, Aanyu K, Haines S, Passchier CW, Sachau T (2010) Active transsection faults in rift transfer zones: evidence for complex stress fields and implications for crustal fragmentation processes in the western branch of the East African rift. Int J Earth Sci 99(7):1633–1642. doi:10.1007/s00531-010-0525-2

    Article  Google Scholar 

  • Lindenfeld M, Rümpker G, Batte A, Schumann A (2012) Seismicity from February 2006 to September 2007 at the Rwenzori Mountains, East African Rift: earthquake distribution, magnitudes and source mechanisms. Solid Earth Discuss 4(1):251–264

    Article  Google Scholar 

  • Link K, Koehn D, Barth M, Tiberindwa J, Barifaijo E, Aanyu K, Foley S (2010) Continuous cratonic crust between the Congo and Tanzania blocks in western Uganda. Int J Earth Sci 99(7):1559–1573. doi:10.1007/s00531-010-0548-8

    Article  Google Scholar 

  • Macdonald KC, Scheirer DS, Carbotte SM (1991) Mid-ocean ridges: discontinuities, segments and giant cracks. Science 253(5023):986–994. doi:10.1126/science.253.5023.986

    Article  Google Scholar 

  • Morley CK, Nelson RA (1990) Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts (1). AAPG Bull 74:1234–1253

    Google Scholar 

  • Moustafa AR (1997) Controls on the development and evolution of transfer zones: the influence of basement structure and sedimentary thickness in the Suez Rift and Red Sea. J Struct Geol 19(6):755–768. doi:10.1016/S0191-8141(97)00007-2

    Article  Google Scholar 

  • Osmaston H (1989) Glaciers, glaciations and equilibrium line altitudes on the Rwenzori. In: Mahaney WG (ed) Quaternary and environmental research on East African Mountains. Balkema, Rotterdam, pp 31–104

    Google Scholar 

  • Otsubo M, Yamaji A (2006) Improved resolution of the multiple inverse method by eliminating erroneous solutions. Comput Geosci 32(8):1221–1227. doi:10.1016/j.cageo.2005.10.022

    Article  Google Scholar 

  • Pollard DD, Saltzer SD, Rubin AM (1993) Stress inversion methods: Are they based on faulty assumptions? J Struct Geol 1 15:1045–1054

    Article  Google Scholar 

  • Reiter F, Acs P (2003) TectonicsFP—a computer program for structural geology. http://www.tectonicsfp.com/

  • Ring U (2008) Extreme uplift of the Rwenzori Mountains in the East African Rift, Uganda: structural framework and possible role of glaciations. Tectonics 27(4):TC4018. doi:10.1029/2007TC002176

    Article  Google Scholar 

  • Roberts EM, Stevens NJ, O’Connor PM (2012) Initiation of the western branch of the East African Rift coeval with the eastern branch. Nat Geosci 5:289–294

    Article  Google Scholar 

  • Sachau T, Koehn D, Passchier C (2011) Lattice-particle simulation of stress patterns in a Rwenzori-type rift transfer zone. J Afr Earth Sci 61(4):286–295. doi:10.1016/j.jafrearsci.2011.08.006

    Article  Google Scholar 

  • Saria E, Calais E, Stamps DS, Delvaux D, Hartnady CJH (2014) Present-day kinematics of the East African Rift. J Geophys Res 119:3584–3600. doi:10.1002/2013JB010901

    Article  Google Scholar 

  • Shan Y, Li Z, Lin G (2004) A stress inversion procedure for automatic recognition of polyphase fault/slip data sets. J Struct Geol 26(5):919–925. doi:10.1016/j.jsg.2003.10.001

    Article  Google Scholar 

  • Sippel J, Scheck-Wenderoth M, Reicherter K, Mazur S (2009) Paleostress states at the South-Western margin of the Central European Basin System—application of fault-slip analysis to unravel a polyphase deformation pattern. Tectonophysics 470(1–2):129–146. doi:10.1016/j.tecto.2008.04.010

    Article  Google Scholar 

  • Stamps DS, Calais E, Saria E, Hartnady C, Nocquet J-M, Ebinger CJ, Fernandes RM (2008) A kinematic model for the East African Rift. Geophys Res Lett 35:L05304. doi:10.1029/2007GL032781

    Article  Google Scholar 

  • Taylor RG, Howard KWF (1998) Post-palaeozoic evolution of weathered land surfaces in Uganda by tectonically controlled cycles of deep weathering and stripping. Geomorphology 25:173–192

    Article  Google Scholar 

  • Tikoff B, Wojtal SF (1999) Displacement control of geologic structures. J Struct Geol 21:959–967

    Article  Google Scholar 

  • Turner FJ (1953) Nature and dynamic interpretation of deformation lamellae in calcite of three marbles. Am J Sci 251(4):276–298

    Article  Google Scholar 

  • Van Wijk JW, Blackman DK (2005) Dynamics of continental rift propagation: the end-member modes. Earth Planet Sci Lett 229:247–258

    Article  Google Scholar 

  • Yamaji A (2000) Multiple inverse method: a new technique to separate stresses from heterogeneous fault-slip data. J Struct Geol 22:441–452

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG), Grant KO 2463/4-2. D. S. Stamps is funded by the NSF EAR Postdoctoral Fellowship program Grant #EAR1249295.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Sachau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachau, T., Koehn, D., Stamps, D.S. et al. Fault kinematics and stress fields in the Rwenzori Mountains, Uganda. Int J Earth Sci (Geol Rundsch) 105, 1729–1740 (2016). https://doi.org/10.1007/s00531-015-1162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1162-6

Keywords

Navigation