Skip to main content
Log in

Synchronous degassing patterns of the neighbouring volcanoes Llaima and Villarrica in south-central Chile: the influence of tidal forces

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 06 June 2014

Abstract

The neighbouring volcanoes Villarrica and Llaima are two of the most active volcanoes in Chile and both currently degas continuously. We present a semi-continuous time series of SO2 fluxes for Villarrica and Llaima volcanoes. The time series was obtained using five scanning Mini-Differential Optical Absorption Spectrometers (Mini-DOAS, UV spectrometers) over 6 months (13 February to 31 July 2010) and is based on 6,829 scans for Villarrica and 7,165 scans for Llaima. Statistical analyses of the SO2 flux time series reveal a periodicity of degassing maxima about every 7 days, and further a conspicuous synchronicity of the degassing maxima and minima between the two volcanoes. Intra-day variations in SO2 fluxes also show a striking correlation between Villarrica and Llaima. All these patterns correlate well with the trend of the modelled solid Earth tide curves, where the 7-day degassing maxima correspond with both the fortnightly tidal maxima and minima. The intra-day degassing peaks mostly correlate well with the periods of maximum deformation rates during the diurnal tidal cycle, and further with semidiurnal minima in atmospheric pressure, a phenomenon we refer to as “the tidal pump”. As there is little time lag between the tidal action and the changes in degassing rates, we infer that degassing at both volcanoes is controlled by conduit convection, involving physical separation between gas and magma at comparatively shallow levels. Variations in daily degassing rates were up to a factor of ca. 12 and 10 for Villarrica and Llaima, respectively, without any noticeable changes in the periodicity. We thus suggest that the described cyclic variations must be taken into account for all comparable volcanoes when using gas monitoring as a tool for volcanic hazard mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albino F, Pinel V, Sigmundsson F (2010) Influence of surface load variations on eruption likelihood—application to two Icelandic subglacial volcanoes, Grímsvötn and Katla. Geophys J Int 181:1510–1524. doi:10.1111/j.1365-246X.2010.04603.x

    Google Scholar 

  • Barrientos SE (1994) Large thrust earthquakes and volcanic eruptions. Pure Appl Geophys 142(1):225–237

    Article  Google Scholar 

  • Blewitt G, Lavallée D, Clarke P, Nurutdinov K (2001) A new global mode of earth deformation: seasonal cycle detected. Science 294:2342. doi:10.1126/science.1065328

    Article  Google Scholar 

  • Bonali FL, Tibaldi A, Corazzato C, Tormey DR, Lara L (2013) Quantifying the effect of large earthquakes in promoting eruptions due to stress changes on magma pathway: the Chile case. Tectonophysics 583:54–67. doi:10.1016/j.tecto.2012.10.025

    Article  Google Scholar 

  • Brown EW (1925) Tidal oscillations in Halemaumau, the Lava Pit of Kilauea. Am Jour Sci—Fifth Ser IX 2:95–112

    Google Scholar 

  • Butman B, Noble M, Chapman DC, Beardsley RC (1983) An upper bound for the tidally rectified current at one location on the southern flank of Georges Bank. J Phys Oceanogr 13:1452–1460

    Article  Google Scholar 

  • Calder ES, Harris AJL, Peña P, Pilger E, Flynn LP, Fuentealba G, Moreno H (2004) Combined thermal and seismic analysis of the Villarrica volcano lava lake, Chile. Andean Geol Revista Geológica de Chile 31(2):259–272

    Google Scholar 

  • CalSky.com (2013) Arnold Barmettler, Zürich, Switzerland, viewed 20 June 2013. http://www.calsky.com/?earthtides=&

  • Casadevall TJ, Johnston DA, Harris DM, Rose WI, Malinconico LL, Stoiber RE, Bornhorst TJ, Williams SN, Woodruff L, Thompson JM (1981) SO2 emission rates at Mount St. Helens from March 29 through December, 1980. US Geol Surv Prof Pap 1250:193–200

    Google Scholar 

  • Castruccio A, Clavero J, Rivera A (2010) Comparative study of lahars generated by the 1961 and 1971 eruptions of Calbuco and Villarrica volcanoes, Southern Andes of Chile. J Volcanol Geotherm Res 190:297–311. doi:10.1016/j.jvolgeores.2009.12.005

    Article  Google Scholar 

  • Chouet BA (2011) Long-period volcano seismicity—it’s source and use in eruption forecasting. Nature 380:1–8

    Google Scholar 

  • Conde V, Bredemeyer S, Duarte E, Pacheco J, Miranda S, Galle B, Hansteen TH (2013) SO2 degassing from Turrialba volcano linked to seismic signatures during the period 2008–2012 (this volume)

  • Connor CB, Stoiber RE, Malinconico LLJR (1988) Variation in sulfur dioxide emissions related to Earth Tides, Halemaumau crater, Kilauea volcano, Hawaii. J Geophys Res 93(B12):14867–14871

    Article  Google Scholar 

  • Dzurizin D (1980) Influence of fortnightly Earth tides at Kilauea volcano, Hawaii. Geophys Res Lett 7(11):925–928

    Article  Google Scholar 

  • Fuentealba G, Peña P, Calder ES (2000) Sustained Tremor, open system degassing and annual perturbations at the Villarrica volcano lava lake, in Chile. In: Congreso Geológico Chileno, no. 9, Actas, vol 2, pp 26–29. Puerto Varas

  • Galle B, Oppenheimer C, Geyer A, McGonigle AJS, Edmonds M, Horocks L (2002) A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance. J Volcanol Geotherm Res 119:241–254

    Article  Google Scholar 

  • Galle B, Johansson M, Rivera C, Zhang Y, Kihlman M, Kern C, Lehmann T, Platt U, Arellano S, Hidalgo S (2010) Network for observation of volcanic and atmospheric change (NOVAC)—a global network for volcanic gas monitoring: network layout and instrument description. J Geophys Res 115:D05304. doi:10.1029/2009JD011823

    Google Scholar 

  • Gonnermann HM, Manga M (2007) The fluid mechanics inside a volcano. Annu Rev Fluid Mech 39:321–356. doi:10.1146/annurev.fluid.39.050905.110207

    Article  Google Scholar 

  • GVN, 04/2010. Villarrica. Bull Global Volcan Netw 35:04

  • Heki K (2003) Snow load and seasonal variation of earthquake occurrence in Japan. Earth Planet Sci Lett 207:159–164

    Article  Google Scholar 

  • Hickey-Vargas R, Moreno-Roa H, López-Escóbar L, Frey FA (1989) Geochemical variations in Andean basaltic and silicic lavas from the Villarrica–Lanín volcanic chain (39.5 S): an evaluation of source heterogeneity, fractional crystallization and crustal assimilation. Contrib Miner Petrol 103:361–386

    Article  Google Scholar 

  • Hill DP, Pollitz F, Newhall C (2002) Earthquake–volcano interactions. Phys Today 55(11):41. doi:10.1063/1.1535006

    Article  Google Scholar 

  • Jaggar TA, Finch RH, Emerson OH (1924) The lava tide, seasonal tilt, and the volcanic cycle. Mon Weather Rev 52:142–145. doi:10.1175/1520-0493(1924)52<142:TLTSTA>2.0.CO;2

    Article  Google Scholar 

  • Jaupart C, Vergniolle S (1988) Laboratory models of Hawaiian and Strombolian eruptions. Nature 331:58–60

    Article  Google Scholar 

  • Johansson M, Galle B, Zhang Y, Rivera C, Chen D, Wyser K (2009) The dual-beam mini-DOAS technique, measurements of volcanic gas emission, plume height and plume speed with a single instrument. Bull Volcanol 71:747–751. doi:10.1007/s00445-008-0260-8

    Article  Google Scholar 

  • Johnston MJS, Mauk FJ (1972) Earth tides and the triggering of eruptions from Mt Stromboli, Italy. Nature 239:266

    Article  Google Scholar 

  • Kasahara J, Sato T (2001) Tidal effects on volcanic earthquakes and deep-sea hydrothermal activity revealed by Ocean Bottom Seismometer Measurements. J Geod Soc Jpn 47(1):424–433

    Google Scholar 

  • Kazahaya K, Shinohara H, Saito G (1994) Excessive degassing of Izu-Oshima volcano: magma convection in a conduit. Bull Volcanol 56:207–216

    Article  Google Scholar 

  • Linde AT, Sacks IS (1998) Triggering of volcanic eruptions. Nature 395:888–890

    Article  Google Scholar 

  • Lindzen RS, Chapman S (1969) Atmospheric tides. Space Sci Rev 10: 3–188. D. Reidel Publishing Company, Dordrecht, Holland

  • Lohmar S, Robin C, Parada MA, Gourgaud A, López-Escobar L, Moreno H, Naranjo J (2005) The two major postglacial (13-14,000 BP) pyroclastic eruptions of Llaima and Villarrica volcanoes (Southern Andes): a comparison. In: 6th international symposium on andean geodynamics (ISAG 2005, Barcelona), extended abstracts, pp 442–445

  • López-Escóbar L, Frey FA, Vergara M (1977) Andesites and high-alumina basalts from the central south Chile high andes: geochemical evidence bearing on their petrogenesis. Contrib Miner Petrol 63:199–228

    Article  Google Scholar 

  • Mahlke J (2009) Geochemical evolution of Llaima and Villarrica Volcanoes, Central Chile. Diploma thesis, University of Kiel

  • Malinconico JRLL (1979) Fluctuations in SO2 emission during recent eruptions of Etna. Nature 278:43–45

    Article  Google Scholar 

  • Manga M, Brodsky E (2006) Seismic triggering of eruptions in the far field: Volcanoes and Geysers. Annu Rev Earth Planet Sci 34:263–291. doi:10.1146/annurev.earth.34.031405.125125

    Article  Google Scholar 

  • Mason BG, Pyle DM, Dade WB, Jupp T (2004) Seasonality of volcanic eruptions. J Geophys Res 109(B04206):1–12. doi:10.1029/2002JB002293

    Google Scholar 

  • Mastin LG (1994) Explosive tephra emissions at Mount St Helens, 1989–1991—the violent escape of magmatic gas following storms. Geol Soc Am Bull 106:175–185

    Article  Google Scholar 

  • Mather TA, Tsanev VI, Pyle DM, McGonigle AJS, Oppenheimer C, Allen AG (2004) Characterization and evolution of tropospheric plumes from Lascar and Villarrica volcanoes, Chile. J Geophys Res 109:D21303. doi:10.1029/2004JD004934

    Article  Google Scholar 

  • Matthews AJ, Barcley J, Carn S, Thompson G, Alexander J, Herd R, Williams C (2002) Rainfall-induced volcanic activity on Monserrat. Geophys Res Lett 29(13): 22-1–22-4. doi:10.1029/2002GL014863

  • McNutt SR, Beavan RJ (1987) Eruptions of Pavlof volcano and their possible modulation by ocean load and tectonic stresses. J Geophys Res 92(B11):509–523

    Google Scholar 

  • Melnick D, Rosenau M, Folguera A, Echtler H (2006) Neogene tectonic evolution of the Neuquén Andes western flank (37–39°S), in Evolution of an Andean Margin: A Tectonic and Magmatic View From the Andes to the Neuquén Basin (35°–39°S lat), edited by Kay SM, and Ramos VA. Spec Pap Geol Soc Am 407:73–95. doi:10.1130/2006.2407(04)

    Google Scholar 

  • Mora-Stock C, Thorwart M, Wunderlich T, Bredemeyer S, Hansteen TH, Rabbel W (2012) Comparison of seismic activity for Llaima and Villarrica volcanoes prior to and after the Maule 2010 earthquake. Int J Earth Sci (Geol Rundsch), this volume. doi:10.1007/s00531-012-0840-x

  • Moreno H, Clavero J, Lara L (1994) Actividad explosiva postglacial del volcán Villarrica, Andes del Sur (39°25′S). en Congreso Geológico Chileno, N°7, Actas, Vol 1, pp 329–333. Concepción

  • Nadeau PA, Werner CA, Waite GP, Brewer ID, Carn SA, Elias T, Fee D, Garcés MA, Sutton AJ (2011) High temporal SO2 emission rate data as part of a multiparameter approach to studying summit vent activity at Kilauea volcano. Abstract V41A-2487 AGU Fall Meeting 2011

  • Naranjo JA, Moreno H (1991) Actividad explosiva postglacial en el volcan Llaima, Andes del Sur (38°45′S). Rev Geol Chile 18:69–80

    Google Scholar 

  • Naranjo JA and Moreno H (2005) Geología del volcán Llaima, Región de la Araucanía. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, 88, 1 mapa escala 1:50.000, Santiago

  • Neuberg J (2000) External modulation of volcanic activity. Geophys J Int 142:232–240. doi:10.1046/j.1365-246X.2000.00161.x

    Article  Google Scholar 

  • Olmos R, Barrancos J, Rivera C, Barahona F, López DL, Henriquez B, Hernández A, Benitez E, Hernández PA, Pérez NM, Galle B (2007) Anomalous emissions of SO2 during the recent eruption of Santa Ana Volcano, El Salvador, Central America. Pure Appl Geophys 164:2489–2506. doi:10.1007/s00024-007-0276-6

    Article  Google Scholar 

  • Ortiz R, Moreno H, García A, Fuentealba G, Astiz M, Peña P, Sánchez N, Tárraga M (2003) Villarrica volcano (Chile): characteristics of the volcanic tremor and forecasting of small explosions by means of a material failure method. J Volcanol Geotherm Res 128:247–259. doi:10.1016/S0377-0273(03)00258-0

    Article  Google Scholar 

  • Palma JL, Calder ES, Basualto D, Blake S, Rothery DA (2008) Correlations between SO2 flux, seismicity, and outgassing activity at the open vent of Villarrica volcano, Chile. J Geophys Res 113:B10201. doi:10.1029/2008JB005577

    Article  Google Scholar 

  • Palma JL, Blake S, Calder ES (2011) Constraints on the rates of degassing and convection in basaltic open-vent volcanoes. Geochem Geophys Geosyst 12:Q11006. doi:10.1029/2011GC003715

    Article  Google Scholar 

  • Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134:77–107. doi:10.1016/j.jvolgeores.2004.01.002

    Article  Google Scholar 

  • Patane G, Frasca A, Agodi A, Imposa S (1994) Earth tides and Etnean volcanic eruptions: an attempt at correlation of the two phenomena during the 1983, 1985 and 1986 eruptions. Phys Earth Planet Int 87(1–2):123–135

    Article  Google Scholar 

  • Petit-Breuihl M (1994) Contribución al conocimiento de la cronología eruptiva histórica del volcán Villarrica, 1958–1985. Universidad de la Frontera, Revista Frontera 13:71–99

    Google Scholar 

  • Rivera A, Bown F, Carrión D, Zenteno P (2012) Glacier responses to recent volcanic activity in Southern Chile. Environ Res Lett 7:014036. doi:10.1088/1748-9326/7/1/014036

    Article  Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  Google Scholar 

  • Scalera G (2008) Great and old earthquakes against great and old paradigms—paradoxes, historical roots, alternative answers. Adv Geosci 14: 41–57. www.adv-geosci.net/14/41/2008/

  • Schindlbeck JC (2012) Holocene post-caldera magma evolution of Llaima volcano, Chile. Diploma thesis, University of Kiel

  • Schmincke HU (2004) Volcanism. Springer, Heidelberg. ISBN 3-540-43650-2

  • Shimozuru D (1975) Lava lake oscillations and the magma reservoir beneath a volcano. Bull Volcanol 39(4):570–580

    Article  Google Scholar 

  • Shinohara H, Witter JB (2005) Volcanic gases emitted during mild Strombolian activity of Villarrica volcano, Chile. Geophys Res Lett 32:L20308. doi:10.1029/2005GL024131

    Article  Google Scholar 

  • Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (2000) Encyclopedia of volcanoes. Academic Press, San Diego

    Google Scholar 

  • Simkin T, and Siebert L (1994) Volcanoes of the world, 2nd ed. Geoscience, Tuscon, Arizona

  • Sottili G, Martino S, Palladino DM, Paciello A, Bozzano F (2007) Effects of tidal stresses on volcanic activity at Mount Etna, Italy. Geophys Res Lett 34:L01311. doi:10.1029/2006GL028190

    Article  Google Scholar 

  • Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm Res 3:1–37

    Article  Google Scholar 

  • Sparks RSJ, Biggs J, Neuberg JW (2012) Monitoring volcanoes. Science 335:1310. doi:10.1126/science.1219485

    Article  Google Scholar 

  • Stern CR (1989) Pliocene to present migration of the volcanic front, Andean Southern Volcanic Zone. Revista Geológica de Chile 16(2):145–162

    Google Scholar 

  • Stern CR (2004) Active andean volcanism: its geologic and tectonic setting. Revista Geológica de Chile 31(2):161–206

    Article  Google Scholar 

  • Stevenson DS, Blake S (1998) Modelling the dynamics and thermodynamics of volcanic degassing. Bull Volcanol 60:307–317

    Article  Google Scholar 

  • Stoiber RE, Jepsen A (1973) Sulfur dioxide contributions to the atmosphere by volcanoes. Science 182:577–578

    Article  Google Scholar 

  • Stoiber RE, Williams SN, Huebert BJ (1986) Sulfur and halogen gases at Masaya caldera complex, Nicaragua: total flux and variations with time. J Geophys Res 91:12215–12231

    Article  Google Scholar 

  • Thorpe and Francis (1979) Variation in Andean andesite composition and their petrogenetic significance. Tectonophysics 57:53–70

    Article  Google Scholar 

  • Tuffen H (2010) How will melting of ice affect volcanic hazards in the twenty-first century? Phil Trans R Soc A 368:2535–2558. doi:10.1098/rsta.2010.0063

    Article  Google Scholar 

  • Vandaele AC, Simon PC, Guilmot JM, Carleer M, Colin R (1994) SO2 absorption cross section measurement in the UV using a Fourier transform spectrometer. J Geophys Res 99(D12):25599–25605

    Article  Google Scholar 

  • Voigt S, Orphal J, Bogumil K, Burrows JP (2001) The temperature dependence (203–293 K) of the absorption cross sections of O3 in the 230–850 nm region measured by Fourier-transform spectroscopy. J Photochem Photobiol A 143:1–9

    Article  Google Scholar 

  • Walter TR (2007) How a tectonic earthquake may wake up volcanoes: stress transfer during the 1996 earthquake-eruption sequence at the Karymsky Volcanic Group, Kamchatka. Earth Planet Sci Lett 263:347–359. doi:10.1016/j.epsl.2007.09.006

    Article  Google Scholar 

  • Watt SFL, Pyle DM, Mather TA (2009) The influence of great earthquakes on volcanic eruption rate along the Chilean subduction zone. Earth Planet Sci Lett 277:399–407. doi:10.1016/j.epsl.2008.11.005

    Article  Google Scholar 

  • Williams-Jones G, Horton KA, Elias T, Garbeil H, Mouginis-Mark PJ, Sutton AJ, Harris AJL (2006) Accurately measuring volcanic plume velocity with multiple UV spectrometers. Bull Volcanol 68:328–332. doi:10.1007/s00445-005-0013-x

    Article  Google Scholar 

  • Witter JB, Calder ES (2004) Magma degassing at Villarrica volcano. In: Villarrica Volcano (39.5°S), Southern Andes, Chile, Bol. 61, pp 46–52, edited by Lara LE and Clavero J, Serv Nac de Geol y Miner, Santiago, Chile

  • Witter JB, Kress VC, Delmelle P, Stix J (2004) Volatile degassing, petrology, and magma dynamics of the Villarrica lava lake, Southern Chile. J Volcanol Geotherm Res 134:303–337. doi:10.1016/j.jvolgeores.2004.03.002

    Article  Google Scholar 

  • Yokoyama I (1971) Volcanic eruptions triggered by tectonic earthquakes. Bull Geophys Inst, Hokkaido Univ 25:129–139 (in Japanese with English abstract)

    Google Scholar 

Download references

Acknowledgments

We thank Bo Galle and Kristin Garofalo for invaluable help with the installation of the Mini-DOAS instruments, and Fernando Gil Cruz, Claudia Bucarey and Christian Delgado and everybody else at OVDAS for excellent support during repeated visits to Chile. Discussions with Armin Freundt, Cindy Mora Stock, Bo Galle, Santiago Arellano and Vladimir Conde Jacobo are highly appreciated. Constructive comments by Michael Manga and an anonymous reviewer helped improve the manuscript. This publication is contribution No. 262 of the Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” at Kiel University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Bredemeyer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bredemeyer, S., Hansteen, T.H. Synchronous degassing patterns of the neighbouring volcanoes Llaima and Villarrica in south-central Chile: the influence of tidal forces. Int J Earth Sci (Geol Rundsch) 103, 1999–2012 (2014). https://doi.org/10.1007/s00531-014-1029-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1029-2

Keywords

Navigation