Skip to main content

Advertisement

Log in

Evolution of the Paleocene-Early Eocene larger benthic foraminifera in the Tethyan Himalaya of Tibet, China

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Paleocene-Early Eocene larger benthic foraminifera (LBF) in the far eastern Neo-Tethyan Ocean of Tibet still remain poorly known. Here, we present a novel, high-resolution larger foraminiferal biozonation from the shallow-water limestones in Tibet, which will improve our current understanding of the larger foraminiferal evolution in the eastern Neo-Tethyan Ocean. Based on one continuous section at Tingri and three separate sections at Gamba, ten Shallow Benthic Zones (SBZ 1–10) have been designated in Tibet by following the principle of Oppel Zone. In contrast to those in Europe, the Paleocene LBFs in Tibet are characterized by high diversification of Lockhartia, Kathina, Daviesina, Miscellanea, Ranikothalia, and Operculina and show progressively increasing diversity of genera and species during SBZ 2–5. Adult dimorphism and large shell size of some LBFs as well as differentiation of the diversity between genera and species initiated as early as SBZ 3. It suggests that the occurrence of the Larger Foraminifera Turnover (LFT) was probably not synchronous in the entire Neo-Tethyan Ocean, because in Europe, the LFT was generally thought to occur at the beginning of SBZ 5. During the Early Eocene, the LBFs in Tibet decreased markedly on the generic level and increased on the species level, and some new genera (Alveolina, Orbitolites, Nummulites, Assilina, Discocyclina) have gained predominance in Tibet. It is nearly identical to the evolution of the LBFs in Europe and indicates a high-degree homogenization of the LBFs in the entire Neo-Tethyan Ocean. Furthermore, the Paleocene-Eocene (P-E) boundary in shallow-water environments has been clearly identified by us, and it is situated in the upper part of SBZ 5 and associated with no evident biotic turnover of shallow benthic foraminiferal communities. The possible diachroneity of the LFT in the Neo-Tethyan Ocean and the evident lagging of the Paleocene-Eocene Thermal Maximum (PETM) behind the LFT imply that the LFT could only be the result of a natural evolutionary process and has no linkage with the PETM. Notably, a transient but distinct larger foraminiferal extinction and origination (LFEO) event has been found in Tibet, which is characterized by a sudden disappearance of all Paleocene lamellar-perforate LBFs, such as Lockhartia, Kathina, Daviesina, Miscellanea, Ranikothalia, and Operculina, and the initial dominance of the Early Eocene porcellaneous-walled Alveolina. The LFEO marks the boundary between SBZ 5 and 6, and might only occur in the low-latitude areas of the Neo-Tethyan Ocean. Surprisingly, the LFEO coincides with the initial recovery of the Carbon Isotope Excursion (CIE), and their synchronicity implies that some possible mechanisms causing the rapid recovery of the CIE probably had also led to the LFEO in the shallow-water environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. From Hottinger’s unpublished monograph on ‘Paleogene rotaliids’.

  2. From Hottinger’s unpublished monograph on ‘Paleogene rotaliids’.

References

  • Afzal J, Williams M, Leng MJ, Aldridge RJ, Stephenson MH (2010) Evolution of Paleocene to Early Eocene larger benthic foraminifer assemblages of the Indus Basin, Pakistan. Lethaia. doi:10.1111/j.1502-3931.2010.00247.x

  • Aubry MP, Ouda K (2003) Introduction to the Upper Paleocene-Lower Eocene of the Upper Nile valley. Micropaleontology 49:2–4

    Article  Google Scholar 

  • Bagherpour B, Vaziri MR (2011) Facies, paleoenvironment, carbonate platform and facies changes across Paleocene Eocene of the Taleh Zang Formation in the Zagros basin, SW-Iran. Hist Biol. doi:10.1080/08912963.2011.587185

  • Bains S, Corfield RM, Norris RD (1999) Mechanisms of climate warming at the end of the Paleocene. Science 285:724–727. doi:10.1126/science.285.5428.724

    Article  Google Scholar 

  • Berggren WA, Kent DV, Swisher CC, Aubry MP (1995) A revised Cenozoic geochronology and chronostratigraphy. SEPM Spec Publ 54:129–212

    Google Scholar 

  • Bowen GJ, Zachos JC (2010) Rapid carbon sequestration at the termination of the Palaeocene-Eocene Thermal Maximum. Nature Geosci 3:866–869

    Article  Google Scholar 

  • Butt AA (1991) Ranikothalia sindensis Zone in late Paleocene biostratigraphy. Micropaleontology 37:77–85

    Article  Google Scholar 

  • Caus E, Hottinger L, Tambareau Y (1980) Plissements du “septal flap” et système de canaux chez Daviesina, foraminifères paléocènes. Eclogae Geol Helv 73:1045–1069

    Google Scholar 

  • Cherchi A, Schroeder R (2005) Revision of Keramosphaerinopsis haydeni (H. Douvillé), larger foraminifer (Miliolacea) from the Paleocene of southern Tibet (Tethys Himalaya). Boll Soc Paleontol Ital 44:175–183

    Google Scholar 

  • Cizancourt MD (1945) Nummulites nouvelles ou peu connues d’Aquiiaine. B Soc Géol Fr 15:643–655

    Google Scholar 

  • Davies LM (1927) The Ranikot beds at Thal (north-west frontier provinces of India). Quart J Geol Soc 83:260–290. doi:10.1144/GSL.JGS.1927.083.01-05.10

    Article  Google Scholar 

  • Davies LM (1930) The fossil fauna of the Samana range and some neighbouring areas: part VI. Mem Geol Surv India 15:66–81

    Google Scholar 

  • Davies LM (1932) The genera Dictyoconoides Nuttall, Lockhartia nov. and Rotalia Lamarck. Trans Roy Soc Edin 57:397–428

    Article  Google Scholar 

  • Davies LM (1938) Westward Extension of the Ranikot Sea. Nature 141:202

    Article  Google Scholar 

  • Davies LM (1940) The upper khirthar beds of north-west India. Quart J Geol Soc 96:199–230. doi:10.1144/GSL.JGS.1940.096.01-04.07

    Article  Google Scholar 

  • Davies LM (1952) Ranikothalia sahnii, n.sp. and R. savitriae, n.sp.: a possible link between the paleocene faunas of the east and west Indies. The Palaeobotanist 1:156–158

    Google Scholar 

  • Drobne K (1977) Alvéolines paléogènes de la Slovénie et de l’Istrie. Schweiz Paleontol Abh 99:1–132

    Google Scholar 

  • Drobne K, Cosovic V, Moro A, Buckovic D (2011) The Role of the Palaeogene Adriatic carbonate platform in the spatial distribution of Alveolinids. Turk J Earth Sci 20:721–751

    Google Scholar 

  • Dupuis C, Aubry M-P, Steurbaut E, Berggren WA, Ouda K, Magioncalda R, Cramer BS, Kent DV, Speijer RP, Heilmann-Clausen C (2003) The Dababiya Quarry Section: Lithostratigraphy, clay mineralogy, geochemistry and paleontology. Micropaleontology 49:41–59. doi:10.2113/49.Suppl_1.41

    Article  Google Scholar 

  • Ferràndez-Cañadell C (2002) New Paleocene orbitoidiform foraminifera from the Punjab Salt Range, Pakistan. J Foraminifer Res 32:1–21

    Article  Google Scholar 

  • Gill W (1953) The genus Assilina in the Laki series (Lower Eocene) of the Kohat Potwar basin, Northwest Pakistan. Contrib Cushman Found Foraminifer Res 4:76–84

    Google Scholar 

  • He Y, Zhang B, Hu L, Sheng J (1976) Mesozoic and Cenozoic foraminifera from the Mount Julmo Lungma region. In: Scientific team of Tibet investigation from Chinese Academy of Sciences (ed) A report of scientific expedition in the Mount Julmo Lungma Region (1966–1968). Palaeontology. Science press, Beijing, pp 1–124

    Google Scholar 

  • Hottinger L (1960) Über Eocäne und Paleocäne Alveolinen. Eclogae Geol Helv 53:265–283

    Google Scholar 

  • Hottinger L (1971) Larger foraminifera common to mediterranean and indian paleocene and eocene formations. Ann Inst Geol Publ Hung 54:145–151

    Google Scholar 

  • Hottinger L (1974) Alveolinids, Cretaceous-Tertiary larger foraminifera. Esso Production Research—European Laboratories

  • Hottinger L (1997) Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bull Soc Géol Fr 168:491–505

    Google Scholar 

  • Hottinger L (1998) Shallow benthic foraminifera at the Paleocene-Eocene boundary. Strata 9:61–64

    Google Scholar 

  • Hottinger L (2001) Learning from the past. In: Levi-Montalcini R (ed) Frontiers of life. Academic Press, London & San Diego, pp 449–477

    Google Scholar 

  • Hottinger L (2009) The Paleocene and earliest Eocene foraminiferal family Miscellaneidae: neither nummulitids nor rotaliids. Noteb Geol 6:1–41

    Google Scholar 

  • Hottinger L, Schaub H (1960) Zur Stufeneinteilung das Paleocaens uns das Eocaens. Einführung der Stufen Ilerdien und Biarritzien. Eclogae Geol Helv 53:453–479

    Google Scholar 

  • Hottinger L, Smeeni SJ, Butt AA (1998) Emendation of Alveolina vredenburgi Davies and Pinfold, 1937 from the Surghar range, Pakistan. Dela-Opera SAZU 4. razr 34:155–163

    Google Scholar 

  • Jauhri AK (1996) Ranikothalia nuttalli (Davies), a distinctive early Ilerdian marker, in the Shillong Plateau. In: Pandey J, Azmi RJ, Bhandari A, Dave A (eds) Contributions to XV Indian Colloquium on Micropalaeontology and stratigraphy. Allied Printer, Dehra Dun, pp 209–218

    Google Scholar 

  • Jauhri AK (1998) Miscellanea Pfender, 1935 (foraminiferida) from the south Shillong region, N.E., India. J Paleontol Soc India 43:73–83

    Google Scholar 

  • Leppig U (1988) Structural analysis and taxonomic revision of Miscellanea, Paleocene, larger foraminifera. Eclogae Geol Helv 81:689–721

    Google Scholar 

  • Liu G, Einsele G (1994) Sedimentary history of the Tethyan basin in the Tibetan Himalayas. Geol Rundsch 83:32–61

    Article  Google Scholar 

  • Martini E (1971) Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Farinacci A (ed) Proceedings of the second Planktonic conference Roma 1970. Edizioni Tecnoscienza, Rome, pp 739–785

    Google Scholar 

  • Murphy BH, Farley KA, Zachos JC (2010) An extraterrestrial 3He-based timescale for the Paleocene-Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266. Geochim Cosmochim Acta 74:5098–5108

    Article  Google Scholar 

  • Nuttall WLF (1925) The Stratigraphy of the Laki Series (Lower Eocene) of parts of Sind and Baluchistan (India); with a description of the larger foraminifera contained in those beds. Quart J Geol Soc 81:417–452. doi:10.1144/gsl.jgs.1925.081.01-04.18

    Article  Google Scholar 

  • Orue-Etxebarria X, Pujalte V, Bernaola G, Apellaniz E, Baceta JI, Payros A, Nuñez-Betelu K, Serra-Kiel J, Tosquella J (2001) Did the Late Paleocene thermal maximum affect the evolution of larger foraminifers? Evidence from calcareous plankton of the Campo Section (Pyrenees, Spain). Mar Micropaleontol 41:45–71

    Article  Google Scholar 

  • Pignatti JS (1998) The philosophy of larger foraminiferal biozonation—A discussion. Dela-Opera SAZU 4 razr 34:15–20

    Google Scholar 

  • Pujalte V, Baceta JI, Schmitz B, Orue-Etxebarria X, Payros A, Bernaola G, Apellaniz E, Caballero F, Robador A, Serra-Kiel J, Tosquella J (2009a) Redefinition of the Ilerdian Stage (early Eocene). Geol Acta 7:177–194

    Google Scholar 

  • Pujalte V, Schmitz B, Baceta JI, Orue-Etxebarria X, Bernaola G, Dinarès-Turell J, Payros A, Apellaniz E, Caballero F (2009b) Correlation of the Thanetian-Ilerdian turnover of larger foraminifera and the Paleocene-Eocene thermal maximum: confirming evidence from the Campo area (Pyrenees, Spain). Geol Acta 7:161–175

    Google Scholar 

  • Racey A (1995) Lithostratigraphy and larger foraminiferal (nummulitid) biostratigraphy of the Tertiary of northern Oman. Micropaleontology 41:1–123

    Article  Google Scholar 

  • Röhl U, Westerhold T, Bralower TJ, Zachos JC (2007) On the duration of the Paleocene-Eocene thermal maximum (PETM). Geochem Geophys Geosyst 8. doi:10.1029/2007gc001784

  • Sameeni SJ, Butt AA (2004) Alveolinid biostratigraphy of the Salt Range succession, Northern Pakistan. Rev Paleobiol 23:505–527

    Google Scholar 

  • Schaub H (1981) Nummulites et Assilines de la Téthys paléogène Taxinomie, phylogenèse et biostratigraphie. Schweiz Paleontol Abh 104:1–236

    Google Scholar 

  • Scheibner C, Speijer RP (2008) Late Paleocene–early Eocene Tethyan carbonate platform evolution—A response to long-and short-term paleoclimatic change. Earth Sci Rev 90:71–102

    Article  Google Scholar 

  • Scheibner C, Speijer RP (2009) Recalibration of the Tethyan shallow-benthic zonation across the Paleocene-Eocene boundary. Geol Acta 7:195–214

    Article  Google Scholar 

  • Scheibner C, Speijer RP, Marzouk AM (2005) Turnover of larger foraminifera during the Paleocene-Eocene Thermal Maximum and paleoclimatic control on the evolution of platform ecosystems. Geology 33:493–496

    Article  Google Scholar 

  • Schmitz B, Pujalte V (2003) Sea-level, humidity, and land-erosion records across the initial Eocene thermal maximum from a continental-marine transect in northern Spain. Geology 31:689–692

    Article  Google Scholar 

  • Sen Gupta BK (1963) A restudy of two common species of Discocyclina from India. Micropaleontology 9:39–49

    Article  Google Scholar 

  • Serra-Kiel J, Hottinger L, Caus E, Drobne K, Ferràndez C, Jauhri AK, Less G, Pavlovec R, Pignatti J, Samsó JM, Schaub H, Sirel E, Strougo A, Tambareau Y, Tosequella J, Zakrevskaya E (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bull Soc Géol Fr 169:281–299

    Google Scholar 

  • Sewall JO, Huber M, Sloan LC (2004) A method for using a fully coupled climate system model to generate detailed surface boundary conditions for paleoclimate modeling investigations: an early Paleogene example. Global Planet Change 43(3–4):173–182

    Article  Google Scholar 

  • Smout AH (1954) Lower Tertiary foraminifera of the Qatar penisula. British Museum (Natural History), London

  • Wan X (1990) Eocene Larger Foraminifera from Southern Tibet. Rev Esp Micropaleontol 22:213–238

    Google Scholar 

  • Wan X (1991) Palaeocene larger foraminifera from southern Tibet. Rev Esp Micropaleontol 23:7–28

    Google Scholar 

  • Weiss W (1993) Age assignments of larger foraminiferal assemblages of Maastrichtian to Eocene age in northern Pakistan. Zitteliana 20:223–252

    Google Scholar 

  • Willems H (1993) Geoscientific investigations in the Tethyan. Universität Bremen, Bremen

    Google Scholar 

  • Willems H (1996) Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geol Rundsch 85:723–754

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan Orogen. Ann Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686–693

    Article  Google Scholar 

  • Zamagni J (2009) Response of a shallow-water ecosystem to the early Paleogene greenhouse environmental conditions. Dissertation, University of Potsdam

  • Zhang B (1988) Orbitolites (foraminifera) from Longjiang of Tingri, Xizang. Acta Micropalaeontol Sin 5:1–13

    Google Scholar 

  • Zhang Q, Willems H, Ding L, Gräfe K-U, Appel E (2012) The initial India-Asia continental collision and foreland basin evolution in the Tethyan Himalaya of Tibet: evidence from stratigraphy and paleontology. J Geol 120:175–189

    Article  Google Scholar 

  • Zhu B, Kidd WSF, Rowley DB, Currie BS, Shafique N (2005) Age of initiation of the India-Asia collision in the East-Central Himalaya. J Geol 113:265–285

    Article  Google Scholar 

Download references

Acknowledgments

The first author is deeply indebted to the late Prof. Lukas Hottinger for his instruction in larger foraminifera. His generosity and patience to impart knowledge to the young generation together with his erudition will be remembered forever. Dr. Christian Scheibner is greatly acknowledged for his illuminating suggestions. Anne Hübner, Christiane Schott, Friederike Wieseler, Jan-Peter Duda, Di Yang, Shuaiquan Fan, and Martin Krogmann are thanked for their assistance in field and laboratory work. Prof. Johannes Pignatti and Prof. Wolf-Christian Dullo (editor) are thanked for their careful and constructive comments. The project is part of the Priority Programme 1372 Tibetan Plateau: Formation, Climate, Ecosystems (TiP) and is funded by Deutsche Forschungsgemeinschaft (No. Wi725/26), the Chinese Ministry of Science and Technology (2011CB403101 to Ding Lin), the Chinese Academy of Sciences (KZCX2-YW-Q09-03 to Ding Lin), and the Max-Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghai Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Willems, H. & Ding, L. Evolution of the Paleocene-Early Eocene larger benthic foraminifera in the Tethyan Himalaya of Tibet, China. Int J Earth Sci (Geol Rundsch) 102, 1427–1445 (2013). https://doi.org/10.1007/s00531-012-0856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-012-0856-2

Keywords

Navigation