Skip to main content
Log in

On the origin and fluid content of some rare crustal xenoliths and their bearing on the structure and evolution of the crust beneath the Bakony–Balaton Highland Volcanic Field (W-Hungary)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Rarely occurring clinopyroxene-plagioclase bearing, felsic granulite and skarn xenoliths were studied from the mantle and crustal xenolith-bearing alkaline basaltic and pyroclastic localities of the Bakony–Balaton Highland Volcanic Field (W-Hungary). Geobarometry and geothermometry of the xenoliths made it possible to categorise them in three groups according to their depth of formation. The first group formed in the lower crust together with mafic and metasedimentary granulites. The second group represents magmatic intrusions of the middle crust, and the third one comprises contact metamorphic rocks of relatively shallow origin. The calculated pressure difference from the core and rim compositions of plagioclase and clinopyroxene as well as garnet breakdown reactions in some xenoliths show evidence for pressure decrease due to crustal thinning both in lower crustal and middle crustal xenoliths during formation of the Pannonian Basin. Fluid inclusion studies reveal the dominance of the CO2-rich fluids in the whole crustal section in contrast with fluids found in mafic garnet-bearing xenoliths. Crustal stratigraphy was constructed for the periods prior to the extension and after the extension on the basis of geobarometry and geophysical data. On the basis of mineral stabilities and geothermo-barometry, we estimated that the pre-extensional thickness of the lower and upper crust may have been 27–34 and 26–28 km, respectively. Comparison of pre-extensional and present-day thickness of the lower and upper crust indicate that thinning affected both the lower and the upper portion of the crust but on a different scale. The calculated thinning factors are between 2.25 and 3.4 for the lower crust and 1.3–1.56 for the upper crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bali E, Szabó C, Vaselli O, Török K (2002) Significance of silicate melt pockets in upper mantle xenoliths from the Bakony–Balaton Highland Volcanic Field, Western Hungary. Lithos 61:79–102

    Article  Google Scholar 

  • Balogh K, Árva-Sós E, Pécskay Z (1986) K/Ar dating of post-Sarmatian alkali basaltic rocs in Hungary. Acta Miner Petrogr Szeged 28:75–93

    Google Scholar 

  • Berkesi M, Hidas K, Szabó C (2007) Fossile geotherm estimation of spinel peridotite xenoliths from Tihany (Bakony–Balaton Highland Volcanic Field) based on CO2 fluid inclusions. Magyar Geofizika 48:31–38

    Google Scholar 

  • Bhowmik SK, Roy A (2003) Garnetiferous metabasites from the Sausar mobile belt: petrology, P-T path and implications for the tectonothermal evolution of the Central Indian tectonic zone. J Petrol 44:387–420

    Article  Google Scholar 

  • Brown PE (1989) FLINCOR: a microcomputer program for the reduction and investigation of fluid-inclusion data. Am Miner 74:1390–1393

    Google Scholar 

  • Brown PE, Lamb WM (1989) P-V-T properties of fluids in the system H2O–CO2–NaCl: new graphical presentations and implications for fluid inclusion studies. Geochim Cosmochim Acta 53:1209–1221

    Article  Google Scholar 

  • Cesare B (2000) Incongruent melting of biotite to spinel in a quartz-free restite at El Joyazo (SE Spain): textures and reaction characterization. Contrib Miner Petrol 139:273–284

    Article  Google Scholar 

  • Dégi J, Badenszki E, Török K, Kodolányi J, Szép A, Marosi G (2005) Detailed study of the CO2–CO ± C system in mafic granulite xenoliths from Bakony–Balaton Highland Volcanic Field central Pannonian Basin, W-Hungary. ECROFI XVIII. Siena, 6–9 July 2005 Abstract e-book, 05 Degi.pdf

  • Dégi J, Abart R, Török K, Rhede D, Petrishcheva E (2009) Evidence for xenolith—host basalt interaction from chemical patterns in Fe–Ti-oxides from mafic granulite xenoliths of the Bakony–Balaton Volcanic field (W-Hungary). Miner Petrol 95:219–234. doi:10.1007/s00710-008-0035-0

    Article  Google Scholar 

  • Dégi J, Abart R, Török K, Bali E, Wirth R, Rhede D (2010) Symplectite formation during decompression induced garnet breakdown in lower crustal mafic granulite xenoliths: mechanisms and rates. Contrib Miner Petrol 159:293–314. doi:10.1007/s00410-009-0428-z

    Article  Google Scholar 

  • Dobosi G, Downes H, Embey-Isztin A, Jenner GA (2003a) Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian Basin (Hungary). Neues Jb Miner Abh 178:217–238

    Article  Google Scholar 

  • Dobosi G, Kempton P, Downes H, Embey-Isztin A, Thirlwall M, Greenwood P (2003b) Lower crustal xenoliths from the Pannonian Basin, Hungary. Part 2: Sr-Nd-Pb-Hf and O isotope evidence for formation of continental lower crust by tectonic emplacement of oceanic crust. Contrib Miner Petrol 144:671–683

    Article  Google Scholar 

  • Downes H, Embey-Isztin A, Thirlwall MF (1992) Petrology and geochemistry of spinel peridotite xenoliths from Hungary: evidence for an association between enrichment and deformation in the mantle. Contrib Miner Petrol 109:340–354

    Article  Google Scholar 

  • Elkins LT, Grove TL (1990) Ternary feldspar experiments and thermodynamic models. Am Miner 75:544–559

    Google Scholar 

  • Ellis D (1978) Stability and phase equilibria of chloride and carbonate bearing scapolites at 750 C and 4000 bar. Geochim Cosmochim Acta 42:1211–1281

    Article  Google Scholar 

  • Embey-Isztin A, Scharbert HG, Dietrich H, Poultidis H (1989) Petrology and geochemistry of peridotite xenoliths in alkali basalts from the Transdanubian Volcanic Region, West Hungary. J Petrol 30:79–105

    Google Scholar 

  • Embey-Isztin A, Scharbert HG, Dietrich H, Poultidis H (1990) Mafic granulites and clinopyroxenite xenoliths from the Transdanubian Volcanic Region (Hungary): implications for the deep structure of the Pannonian Basin. Min Mag 54:463–483

    Article  Google Scholar 

  • Embey-Isztin A, Downes H, James DE, Upton BGJ, Dobosi G, Ingram G, Harmon RS, Scharbert HG (1993) The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe. J Petrol 34:317–343

    Google Scholar 

  • Embey-Isztin A, Downes H, Kempton PD, Dobosi G, Thirwall M (2003) Lower crustal granulite xenoliths from the Pannonian Basin, Hungary. Part 1: mineral chemistry, thermobarometry and petrology. Contrib Miner Petrol 144:652–670

    Article  Google Scholar 

  • Gasparik T, Newton RC (1984) The reversed alumina contents of orthopyroxene in equilibrium with spinel and forsterite in the system MgO–Al2O3–SiO2. Contrib Miner Petrol 85:186–196

    Article  Google Scholar 

  • Goldschmidt JR, Newton RC (1977) Scapolite-plagioclase stability relations at high pressures and temperatures in the system NaAlSi3O8–CaAl2Si2O8–CaCO3–CaSO4. Am Miner 62:1063–1080

    Google Scholar 

  • Guernina S, Sawyer EW (2003) Large-scale melt-depletion in granulite terranes: an example from the Archean Ashuanipi subprovince of Quebec. J Metam Geol 21:181–201

    Article  Google Scholar 

  • Herzberg CT (1978) Pyroxene geothermometry and geobarometry: experimental and thermodynamic evaluation of some subsolidus phase relations involving clinopyroxenes in the system CaO–MgO–Al2O3–SiO2. Geochim Cosmochim Acta 42:945–957

    Article  Google Scholar 

  • Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophys 226:333–357

    Google Scholar 

  • Huismans RS, Podladchikov YY, Cloetingh S (2001) Dynamic modeling of the transition from passive to active rifting, application to Pannonian basin. Tecton 20:1021–1039

    Google Scholar 

  • Irving AJ (1974) Geochemical and high-pressure experimental studies of garnet pyroxenite and pyroxene granulite xenoliths from the Delegate Basaltic pipes, Australia. J Petrol 15:1–40

    Google Scholar 

  • Krogh EJ (1988) The garnet-clinopyroxene Fe-Mg geothermometer—a reinterpretation of existing experimental data. Contrib Miner Petrol 99:44–48

    Article  Google Scholar 

  • Kushiro I, Yoder HS (1966) Anorthite—forsterite and anorthite—enstatite reactions and their bearing on the basalt—eclogite transformation. J Petrol 7:337–362

    Google Scholar 

  • McCarthy TC, Patiño-Douce AE (1998) Empirical calibration of the silica-Ca-tschermak’s-anorthite (SCAn) geobarometer. J Metam Geol 16:675–686

    Article  Google Scholar 

  • Mituch E, Posgay K (1972) The crustal structure of Central and Southeastern Europe on the results of explosion seismology; Hungary. Geophys Transactions Spec Ed. Eötvös Loránd Geofizikai Intézet, Budapest, pp 118–131

    Google Scholar 

  • Moecher DP, Essene EJ (1990) Phase equilibria for calcic scapolite, and implications of variable Al-Si disorder for P-T, T-XCO2, and a-X relations. J Petrol 31:997–1024

    Google Scholar 

  • Neogi S, Dasgupta S, Fukuoka M (1998) High P-T polymetamorphism, dehydration melting, and generation of migmatites and granites in the higher himalayan crystalline complex, Sikkim, India. J Petrol 39:61–99

    Article  Google Scholar 

  • Newton RC, Goldschmidt JR (1976) Stability of the end-member scapolites: 3NaAlSi3O8 NaCl, 3CaAl2Si2O8 CaCO3, 3CaAl2Si2O8 CaSO4. Zeitschrift Kristallog 143:333–353

    Google Scholar 

  • Orville PM (1975) Stability of scapolite in the system Ab–An–NaCl–CaCO3, at 4 kb and 750 C. Geochim Cosmochim Acta 39:1091–1105

    Article  Google Scholar 

  • Pattison DRM, Chacko T, Farquhar J, McFarlaine CRM (2003) Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. J Petrol 44:867–900

    Article  Google Scholar 

  • Posgay K, Albu I, Petrovics I, Ráner G (1981) Character of the earth’s crust and upper mantle on the basis of seismic reflection measurements in Hungary. Earth Evol Sci 3–4:272–279

    Google Scholar 

  • Posgay K, Albu I, Mayerova M, Nakladalova Z, Ibrmajer I, Blizkovski M, Aric K, Gutdeutsch R (1991) Contour map of the Mohorovicic discontinuity beneath Central Europe. Geophys Trans 36:7–13

    Google Scholar 

  • Poty B, Leroy J, Jachimowicz L (1976) Un nouvel appareil pour la measure temperat es sous le microscope. Bull Miner 99:182–186

    Google Scholar 

  • Satish-Kumar M, Santosh M, Harley SL, Yoshida M (1996) Calc-silicate assemblages from Kerala Khondalite Belt, southern India: Implications for pressure-temperature-fluid histories. J Southeast Asian Earth Sci 14:245–263

    Article  Google Scholar 

  • Soto JI, Soto VM (1995) PTMAFIC: software package for thermometry, barometry and activity calculations in mafic rocks using an IBM compatible computer. Comp Geosci 21:619–652

    Article  Google Scholar 

  • Spear FS (1981) An experimental study of hornblende stability and compositional variability in amphibolites. Am J Sci 281:697–734

    Article  Google Scholar 

  • Stegena L, Géczy B, Horváth F (1975) Late Cenozoic evolution of the Pannonian Basin. Tectonophys 26:71–90

    Google Scholar 

  • Szabó CS, Harangi SZ, Csontos L (1992) Review of Neogene and Quaternary volcanism of the Carpathian-Pannonian Region. Tectonophys 208:243–256

    Google Scholar 

  • Szabó C, Harangi S, Vaselli O, Downes H (1995) Temperature and oxygen fugacity in peridotite xenoliths from the Carpatho-Pannonian Region. In: Downes H, Vaselli O (eds) Neogene and related magmatism in the Carpatho-Pannonian region. Acta Volcanol 7:231–239

  • Szafián P, Tari G, Horváth F, Cloetingh S (1999) Crustal structure of the Alpine–Pannonian transition zone: a combined seismic and gravity study. Int J Earth Sci 88:98–110

    Article  Google Scholar 

  • Török K (1995) Garnet breakdown reaction and fluid inclusions in a garnet clinopyroxenite xenolith from Szentbékkálla (Balaton Highland, W-Hungary). In: Downes H, Vaselli O (eds) Neogene and related magmatism in the Carpatho-Pannonian region. Acta Volcanol 7:285–290

  • Török K (2002) Ultrahigh-temperature metamorphism of a buchitised xenolith from the basaltic tuff of Szigliget (Hungary). Acta Geol Hung 45:175–192

    Article  Google Scholar 

  • Török K, De Vivo B (1995) Fluid inclusions in upper mantle xenoliths from the Balaton Highlands, W-Hungary. In: Downes H, Vaselli O (eds) Neogene and related magmatism in the Carpatho-Pannonian region. Acta Volcanol 7:277–285

  • Török K, Bali E, Szabó C, Szakál JA (2003) Sr-barite droplets associated with sulfide blebs in clinopyroxene megacrysts from basaltic tuff (Szentbékkálla, Western Hungary). Lithos 66:275–289

    Article  Google Scholar 

  • Török K, Dégi J, Marosi G, Szép A (2005) Reduced carbonic fluids in mafic granulite xenoliths from the Bakony–Balaton Highland Volcanic Field, W-Hungary. Chem Geol 223:93–108. doi:10.1016/j.chemgeo.2005.05.010

    Article  Google Scholar 

  • Vielzeuf D, Schmidt MW (2001) Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts. Contrib Miner Petrol 141:251–267

    Article  Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Miner Petrol 62:129–139

    Article  Google Scholar 

  • Wenzel T, Baumgartner LP, Brügman GE, Konnikov EG, Kislov EV (2002) Partial melting and assimilation of dolomitic xenoliths by mafic magma: The Ioko-Dovyren intrusion (North Baikal Region, Russia). J Petrol 43:2049–2074

    Article  Google Scholar 

  • Wijbrans J, Németh K, Martin U, Balogh K (2007) 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. J Volcanol Geotherm Res 164:193–204. doi:10.1016/j.jvolgeores.2007.05.009

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the financial help of the National Scientific Research Fund (OTKA, NN79943) and the Bolyai grant of the Hungarian Academy of Sciences. The author also acknowledges constructive criticism of the referees, B. Cesare, A. van den Kerkhof, and B. DeVivo which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kálmán Török.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Török, K. On the origin and fluid content of some rare crustal xenoliths and their bearing on the structure and evolution of the crust beneath the Bakony–Balaton Highland Volcanic Field (W-Hungary). Int J Earth Sci (Geol Rundsch) 101, 1581–1597 (2012). https://doi.org/10.1007/s00531-011-0743-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-011-0743-2

Keywords

Navigation