Skip to main content
Log in

Slip rate variations on faults in the Basin-and-Range Province caused by regression of Late Pleistocene Lake Bonneville and Lake Lahontan

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Late Pleistocene regression of two large pluvial lakes—Lake Bonneville and Lake Lahontan—caused considerable lithospheric rebound in the Basin-and-Range Province, USA. Here, we use finite-element models to show how lake growth and regression affect the temporal and spatial slip evolution on faults near the former lakes. Our results show that fluctuations in the volume of Lake Bonneville caused along-strike slip variations on the Wasatch normal fault, with a pronounced slip rate increase on its northern and central parts during lake regression. The response of normal and strike-slip faults near the ring-shaped Lake Lahontan depends on their location within the rebound area. Faults located in the centre of rebound show a slip rate increase during lake regression, whereas strike-slip faults at the periphery decelerate. All slip rate variations are caused by differential stress changes owing to changing lake levels, regardless of the individual fault response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams KD, Wesnousky SG (1998) Shoreline processes and the age of Lake Lahontan highstand in the Jessup embayment. Bull Geol Soc Am 110:1318–1332

    Article  Google Scholar 

  • Adams KD, Wesnousky SG, Bills BG (1999) Isostatic rebound, active faulting, and potential geomorphic effects in the Lake Lahontan basin, Nevada and California. Bull Geol Soc Am 111:1739–1756

    Article  Google Scholar 

  • Amelung F, Bell JW (2003) Interferometric synthetic aperture radar observations of the 1994 Double Spring Flat, Nevada, earthquake (M5.9): main shock accompanied by triggered slip on a conjugate fault. J Geopyhs Res 108:2433. doi:10.1029/2002JB001953

    Article  Google Scholar 

  • Armstrong PA, Ehlers TA, Chapman DS, Farley KA, Kamp PJJ (2003) Exhumation of the central Wasatch Mountains, Utah: 1. Patterns and timing of exhumation deduced from low-temperature thermochronology data. J Geophys Res 108:2172. doi:10.1029/2001JG001708

    Article  Google Scholar 

  • Armstrong PA, Taylor AR, Ehlers TA (2004) Is the Wasatch fault footwall (Utah, United States) segmented over million-year time scales? Geology 32:385–388. doi:10.1130/G20421.1

    Article  Google Scholar 

  • Atwood WW (1909) Glaciation of the Uinta and Wasatch Mountains. USGS Prof Paper 61

  • Babeyko AY, Sobolev SV (2005) Quantifying different modes of the late Cenozoic shortening in the central Andes. Geology 33:621–624. doi:10.1130/G21126.1

    Article  Google Scholar 

  • Bartsch M (2006) Rekonstruktion des Paläogletschervolumens während des letzten glazialen Maximums in den Wasatch Mountains, Utah (USA). BSc thesis, Westfälische Wilhelms-Universität Münster

  • Beaumont C, Ellis S, Hamilton J, Fullsack P (1996) Mechanical model for subduction-collision tectonics of Alpine-type compressional orogens. Geology 24:675–678

    Article  Google Scholar 

  • Bell JW, Caskey SJ, Ramelli AR, Guerrieri L (2004) Pattern and rates of faulting in the Central Nevada Seismic Belt, and paleoseismic evidence for prior beltlike behavior. Bull Seismol Soc Am 94:1229–1254

    Article  Google Scholar 

  • Benson LV, Thomson RA (1987) Lake level variation in the Lahontan basin for the past 50,000 years. Quat Res 28:69–85

    Article  Google Scholar 

  • Bills BG, May GM (1987) Constraints on lithospheric thickness and upper mantle viscosity from isostatic warping of Bonneville, Provo, and Gilbert stage shorelines. J Geophys Res 92:11493–11508

    Article  Google Scholar 

  • Bills BG, Currey DR, Marshall GA (1994) Viscosity estimates for the crust and upper mantle from patterns of lacustrine shoreline deformation in the Eastern Great Basin. J Geophys Res 99:22059–22086

    Article  Google Scholar 

  • Bills BG, Adams KD, Wesnousky SG (2007) Viscosity structure of the crust and upper mantle in western Nevada from isostatic rebound patterns of the late Pleistocene Lake Lahontan high shoreline. J Geophys Res 112:B06405. doi:10.1029/2005JB003941

    Article  Google Scholar 

  • Briggs RW, Wesnousky SG (2004) Late Pleistocene fault slip rate, earthquake recurrence, and recency of slip along the Pyramid Lake fault zone, northern Walker Lane, United States. J Geophys Res 109:B08402. doi:10.1029/2003JB002717

    Article  Google Scholar 

  • Bruhn RL, DuRoss CB, Harris RA, Lund WR (2005) Neotectonics and paleoseismology of the Wasatch fault, Utah. In: Pederson JL, Dehler CM (eds) Interior western United States, vol 6. Geological Society of America Field Guide, pp 231–259

  • Buck WR, Lavier LL, Poliakov ANB (2005) Modes of faulting at mid-ocean ridges. Nature 434:719–723

    Article  Google Scholar 

  • Crittenden MD (1963) Effective viscosity of the Earth derived from isostatic loading of Pleistocene Lake Bonneville. J Geophys Res 68:5517–5530

    Google Scholar 

  • Ehlers TA, Willett SD, Armstrong PA, Chapman DS (2003) Exhumation of the central Wasatch Mountains, Utah: 2. Thermokinematic model of exhumation, erosion, and thermochronometer interpretation. J Geophys Res 108:2173. doi:10.1029/2001JB001723

    Article  Google Scholar 

  • Ellis S, Stöckhert B (2004) Elevated stresses and creep rates beneath the brittle-ductile transition caused by seismic faulting in the upper crust. J Geophys Res 109:B05407. doi:10.1029/2003JB002744

    Article  Google Scholar 

  • Friedrich A, Wernicke BP, Bennett NiemiNA, RA DavisJL (2003) Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. J Geophys Res 108:2199. doi:10.1029/2001JB000682

    Article  Google Scholar 

  • Gilbert GK (1890) Lake Bonneville. US Geological Survey Monograph 1

  • Gourmelen N, Amelung F (2005) Postseismic mantle relaxation in the Central Nevada Seismic Belt. Science 310:1473–1476

    Article  Google Scholar 

  • Hammond WC, Thatcher W (2004) Contemporary tectonic deformation of the Basin and Range province, western United States: 10 years of observation with the Global Positioning System. J Geophys Res 109:B08403. doi:10.1029/2003JB002746

    Article  Google Scholar 

  • Hampel A, Hetzel R, Densmore AL (2007) Postglacial slip rate increase on the Teton normal fault, northern Basin and Range Province, caused by melting of the Yellowstone ice cap and deglaciation of the Teton Range? Geology 35:1107–1110. doi:10.1130/G24093A.1

    Article  Google Scholar 

  • Henk A (2006) Stress and strain during fault-controlled lithospheric extension—insights from numerical experiments. Tectonophysics 415:39–55

    Article  Google Scholar 

  • Hetzel R, Hampel A (2005) Slip rate variations on normal faults during glacial-interglacial changes in surface loads. Nature 435:81–84. doi:10.1038/nature03562

    Article  Google Scholar 

  • Jackson M (1991) The number and timing of Holocene paleoseismic events on the Nephi and Levan segments, Wasatch fault zone, Utah. Utah Geological Survey Special Study 78

  • Kaufmann G, Amelung F (2000) Reservoir-induced deformation and continental rheology in vicinity of Lake Mead, Nevada. J Geophys Res 105:16341–16358

    Article  Google Scholar 

  • Lund WR, Black BD (1998) Paleoseismic investigation at Rock Canyon, Provo segment, Wasatch fault zone, Utah County, Utah. Utah Geological Survey Special Study 93

  • Machette M, Personius SF, Nelson AR (1991) The Wasatch fault zone, Utah—segmentation, and history of Holocene earthquakes. J Struct Geol 13:137–149

    Article  Google Scholar 

  • Madsen DB, Currey DR (1979) Late Quaternary glacial and vegetation changes, Little Cottonwood Canyon, Wasatch Mountains, Utah. Quat Res 12:254–270

    Article  Google Scholar 

  • McCalpin JP (2002) Post-Bonneville Paleoearthquake Chronology of the Salt Lake City Segment, Wasatch Fault Zone, from the 1999 “Megatrench” Site. Utah Geological Survey Miscellaneous Publications 02-7

  • McCalpin JP, Forman SL (2002) Post-provo paleoearthquake chronology of the Brigham City Segment, Wasatch Fault Zone, Utah. Utah Geological Survey Miscellaneous Publications 02-9

  • McCalpin JP, Nishenko SP (1996) Holocene palaeoseismicity, temporal clustering, and probabilities of future large (M > 7) earthquakes on the Wasatch fault zone, Utah. J Geophys Res 101:6233–6253

    Article  Google Scholar 

  • McCalpin JP, Forman SL, Lowe M (1994) Reevaluation of Holocene faulting at the Kaysville site, Weber segment, of the Wasatch fault zone, Utah. Tectonics 13:1–16

    Article  Google Scholar 

  • Munroe JS, Laabs BJC, Shakun JD, Singer BS, Mickelson DM, Refsnider KA, Caffee MW (2006) Latest Pleistocene advance of alpine glaciers in the southwestern Uinta Mountains, Utah, USA: evidence for the influence of local moisture sources. Geology 34:841–844. doi:10.1130/G22681.1

    Article  Google Scholar 

  • Nakiboglu SM, Lambeck K (1982) A study of the Earth’s response to surface loading with applications to Lake Bonneville. Geophys J R Astron Soc 70:577–620

    Google Scholar 

  • Nelson AR, Lowe M, Personius S, Bradley L-A, Forman SL, Klauk R, Garr J (2006) Holocene earthquake history of the northern Weber segment of the Wasatch fault zone, Utah. Utah Geological Survey Miscellaneous Publications 05-8

  • Nishimura T, Thatcher W (2003) Rheology of the lithosphere inferred from postseismic uplift following the 1959 Hebgen Lake earthquake. J Geophys Res 108:2389. doi:10.1029/2002JB002191

    Article  Google Scholar 

  • Oviatt CG, Currey DR, Sack D (1992) Radiocarbon chronology of Lake Bonneville, Eastern Great Basin, USA. Palaeogeogr Palaeoclimat Palaeoecol 99:225–241

    Article  Google Scholar 

  • Personius SF (1991 Paleoseismic analysis of the Wasatch fault zone at the Brigham City trench site, Brigham City, Utah and Pole Patch trench site, Pleasant View, Utah. Utah Geological Survey Special Study 76

  • Regenauer-Lieb K, Yuen DA (2003) Modeling shear zones in geological and planetary sciences: solid- and fluid-thermal–mechanical approaches. Earth Sci Rev 63:295–349

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand C, Blackwell PG, Buck CE, Burr G, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hughen KA, Kromer B, McCormac FG, Manning S, Bronk Ramsey C, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) Radiocarbon calibration from 0–26 cal kyr BP—IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058

    Google Scholar 

  • Roth JC (2006) Digitale Rekonstruktion von Paläogletschereisvolumen des letzten glazialen Maximums am Beispiel der Uinta Mountains, Utah (USA). MSc thesis, Westfälische Wilhelms-Universität Münster

  • Schwarz M, Henk A (2005) Evolution and structure of the Upper Rhine Graben: insights from three-dimensional thermomechanical modelling. Int J Earth Sci 94:732–750

    Article  Google Scholar 

  • Scott WE, McCoy WD, Shroba RR, Rubin M (1983) Re-interpretation of the exposed record of the last two cycles of Lake Bonneville, western United States. Quat Res 20:261–285

    Article  Google Scholar 

  • Smith RB, Bruhn RL (1984) Intraplate extensional tectonics of the eastern Basin-Range: Inferences on structural style from seismic reflection data, regional tectonics, and thermal-mechnical models of brittle-ductile deformation. J Geophys Res 89:5733–5762

    Article  Google Scholar 

  • Thatcher W, Foulger GR, Julian BR, Svarc J, Quilty E, Bawden GW (1999) Present-day deformation across the Basin and Range Province, Western United States. Science 283:1714–1718

    Article  Google Scholar 

  • Turpeinen H, Hampel A, Karow T, Maniatis G (2008) Effect of ice sheet growth and melting on the slip evolution of thrust faults. Earth Planet Sci Lett 269:230–241. doi:10.1016/j.epsl.2008.02.017

    Article  Google Scholar 

  • Wallace RE (1987) Grouping and migration of surface faulting and variation in slip rates on faults in the Great Basin province. Bull Seismol Soc Am 77:868–877

    Google Scholar 

  • Wang K, Plank T, Walker JD, Smith EIA (2002) Mantle melting profile across the Basin and Range, SW USA. J Geophys Res 107:2017. doi:10.1029/2001JB000209

    Article  Google Scholar 

  • Wernicke B, Friedrich AM, Niemi NA, Bennett RA, Davis JL (2000) Dynamics of plate boundary fault systems from Basin and Range Geodetic Network (BARGEN) and Geologic Data. GSA Today 10:1–7

    Google Scholar 

  • Wesnousky SG, Barron SD, Briggs RW, Caskey SJ, Kumar S, Owen L (2005) Paleoseismic transect across the northern Great Basin. J Geophys Res 110:B05408. doi:10.1029/2004JB003283

    Article  Google Scholar 

  • Zandt G, Myers SC, Wallace TC (1995) Crust and mantle structure across the Basin and Range-Colorado Plateau boundary at 37°N latitude and implications for Cenozoic extensional mechanism. J Geophys Res 100:10529–10548

    Article  Google Scholar 

  • Zoback ML, Zoback MD, Adams J, Assumpcao M, Bell S, Bergman EA, Blümling P, Brereton NR, Denham D, Ding J, Fuchs K, Gay N, Gregersen S, Gupta HK, Gvishiani A, Jacob K, Klein R, Knoll P, Magee M, Mercier JL, Müller B, Paquin C, Rajendran K, Stephansson O, Suarez G, Suter M, Udias A, Xu ZH, Zhizhin M (1989) Global patterns of tectonic stress. Nature 341:291–298

    Article  Google Scholar 

Download references

Acknowledgments

We thank K. Reicherter for his constructive review and R. Hetzel for critical comments on a previous draft of the manuscript. Funding by the German Research Foundation (DFG) through a grant to A.H. (grant no. HA 3473/2-1) within the framework of the Emmy-Noether-Program is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Hampel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karow, T., Hampel, A. Slip rate variations on faults in the Basin-and-Range Province caused by regression of Late Pleistocene Lake Bonneville and Lake Lahontan. Int J Earth Sci (Geol Rundsch) 99, 1941–1953 (2010). https://doi.org/10.1007/s00531-009-0496-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-009-0496-3

Keywords

Navigation