Skip to main content
Log in

Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In an attempt to elucidate the pre-Variscan evolution history of the various geological units in the Austrian part of the Bohemian Massif, we have analysed zircons from 12 rocks (mainly orthogneisses) by means of SHRIMP, conventional multi-grain and single-grain U–Pb isotope-dilution/mass-spectrometry. Two of the orthogneisses studied represent Cadomian metagranitoids that formed at ca. 610 Ma (Spitz gneiss) and ca. 580 Ma (Bittesch gneiss). A metagranite from the Thaya batholith also gave a Cadomian zircon age (567±5 Ma). Traces of Neoproterozoic zircon growth were also identified in several other samples, underlining the great importance of the Cadomian orogeny for the evolution of crust in the southern Bohemian Massif. However, important magmatic events also occurred in the Early Palaeozoic. A sample of the Gföhl gneiss was recognised as a 488±6 Ma-old granite. A tonalite gneiss from the realm of the South Bohemian batholith was dated at 456±3 Ma, and zircon cores in a Moldanubian metagranitic granulite gave similar ages of 440–450 Ma. This Ordovician phase of magmatism in the Moldanubian unit is tentatively interpreted as related to the rifting and drift of South Armorica from the African Gondwana margin. The oldest inherited zircons, in a migmatite from the South Bohemian batholith, yielded an age of ca. 2.6 Ga, and many zircon cores in both Moravian and Moldanubian meta-granitoid rocks gave ages around 2.0 Ga. However, rocks from the Moldanubian unit show a striking lack of zircon ages between 1.8 and 1.0 Ga, reflecting an ancestry from Armorica and the North African part of Gondwana, respectively, whereas the Moravian Bittesch gneiss contains many inherited zircons with Mesoproterozoic and Early Palaeoproterozoic ages of ca. 1.2, 1.5 and 1.65–1.8 Ga, indicating a derivation from the South American part of Gondwana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Arnold A, Scharbert HG (1973) Rb–Sr-Altersbestimmungen an Granuliten der südlichen Böhmischen Masse in Österreich. Schweiz Mineral Petrogr Mitt 53:61–78

    CAS  Google Scholar 

  • Caby R, Andreopoulos-Renaud U, Pin C (1989) Late Proterozoic arc-continent and continent-continent collision in the pan-African trans-Saharan belt of Mali. Can J Earth Sci 26:1136–1146

    CAS  Google Scholar 

  • Compston W, Williams IS, Meyer C (1984) U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high-resolution ion-microprobe. J Geophys Res 89:525–534

    CAS  Google Scholar 

  • Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá-Barrandian unit – a correlation of U–Pb isotopic dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85

    Article  Google Scholar 

  • Dudek A, Melkova J (1975) Radiometric age determination in the crystalline basement of the Carpathian Foredeep and of the Moravian Flysch. Bull Geol Surv Prague 50(5):257–264

    CAS  Google Scholar 

  • Edel JB, Schulmann K, Holub FV (2003) Anticlockwise and clockwise rotations of the eastern Variscides accommodated by dextral lithospheric wrenching; palaeomagnetic and structural evidence. J Geol Soc Lond 160(2):209–218

    Google Scholar 

  • Finger F, Steyrer HP (1995) A tectonic model for the eastern Variscides: indications from a chemical study of amphibolites in the southeastern Bohemian Massif. Geol Carpath 46:137–150

    CAS  Google Scholar 

  • Finger F, Von Quadt A (1995) U–Pb ages of zircons from a plagiogranite-gneiss in the south-eastern Bohemian Massif, Austria: further evidence for an important early Paleozoic rifting episode in the eastern Variscides. Schweiz Mineral Petrogr Mitt 75:265–270

    CAS  Google Scholar 

  • Finger F, Riegler G (1999) Der Thayabatholith und der kristalline Untergrund des Weinviertels. In: Roetzel R (ed) Arbeitstagung Geol Bundes Wien, pp 23–31

  • Finger F, Frasl G, Dudek A, Jelinek E, Thöni M (1995) Cadomian plutonism in the Moravo-Silesian basement. In: Dallmayer RD, Franke W, Weber K (eds) Tectonostratigraphic evolution of the central and eastern European orogens. Springer, Berlin Heidelberg New York, pp 495–507

  • Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of Central Europe; their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96

    CAS  Google Scholar 

  • Finger F, Von Quadt A, Pin C, Steyrer HP (1998) The ophiolite chain along the western Moravo-Silesian plate margin; a trace of the Rheic Suture? Acta Univ Carol Geol 42:244–245

    Google Scholar 

  • Finger F, Hanzl P, Pin C, von Quadt A, Steyrer HP (2000) The Brunovistulian; Avalonian Precambrian sequence at the eastern end of the Central European Variscides? In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes; quantification and modelling in the Variscan Belt. Geol Soc Lond Spec Publ 179:103–112

    Google Scholar 

  • Finger F, Broska I, Haunschmid B, Hrasko L, Kohut M, Krenn E, Petrik I, Riegler G, Uher P (2003) Electron-microprobe dating of monazites from Western Carpathian basement granitoids; plutonic evidence for an important Permian rifting event subsequent to Variscan crustal anatexis. Int J Earth Sci 92:86–98

    CAS  Google Scholar 

  • Floyd PA, Winchester J, Seston R, Kryza R, Crowley QG (2000) Review of geochemical variation in Lower Palaeozoic metabasites from the NE Bohemian Massif: intracratonic rifting and plume-ridge interaction. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Lond Spec Publ 179:155–174

    CAS  Google Scholar 

  • Frank W, Hammer S, Popp F, Scharbert S, Thöni M (1990) Isotopengeologische Untersuchungen zur Entwicklungsgeschichte der Böhmischen Masse. Proterozoische Gesteinsserien und variszische Hauptorogenese. Österr Beitr Met Geoph 3:185–228

  • Franke W (2000) The mid-European segment of the Variscides; tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Spec Publ 179:35–61

    Google Scholar 

  • Franke W, Żelaźniewicz A (2000) The eastern termination of the Variscides: terrane correlation and kinematic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Spec Publ 179:63–86

    Google Scholar 

  • Franke W, Żelaźniewicz A (2002) Structure and evolution of the Bohemian Arc. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geol Soc Lond Spec Publ 201:279–293

    Google Scholar 

  • Frasl G (1970) Zur Metamorphose und Abgrenzung der Moravischen Zone im niederöster-reichischen Waldviertel. Nachr Dtsch Geol Ges 2:55–61

    Google Scholar 

  • Friedl G (1997) U–Pb-Datierungen an Zirkonen und Monaziten aus Gesteinen vom österreichischen Anteil der Böhmischen Masse. PhD Thesis, Univ Salzburg

  • Friedl G, Von Quadt A, Ochsner A, Finger F (1993) Timing of the Variscan orogeny in the Southern Bohemian Massif (NE-Austria) deduced from new U–Pb zircon and monazite dating. Terra Nova 1(5):235–236

    Google Scholar 

  • Friedl G, Finger F, McNaughton NJ, Fletcher IR (2000) Deducing the ancestry of terranes: SHRIMP evidence for South America-derived Gondwana fragments in central Europe. Geology 28(11):1035–1038

    Article  Google Scholar 

  • Fritz H, Neubauer, F (1993) Kinematics of crustal stacking and dispersion in the southeastern Bohemian Massif. Geol Rundsch 82:556–565

    Google Scholar 

  • Fritz H, Dallmeyer RD, Neubauer F (1996) Thick-skinned versus thin-skinned thrusting: Rheology controlled thrust propagation in the Variscan collision belt (the southeastern Bohemian Massif). Tectonics 15:1389–1413

    Article  Google Scholar 

  • Fuchs G (1976) Zur Entwicklung der Böhmischen Masse. Jahrb Geol Bundes Wien 119:45–61

    Google Scholar 

  • Fuchs G, Matura A (1976) Zur Geologie des Kristallins der südlichen Böhmischen Masse. Jahrb Geol Bundes Wien 119:1–43

    Google Scholar 

  • Gebauer D, Friedl G (1993) A 1.38 Ga protolith age for the Dobra orthogneiss (Moldanubian zone of the southern Bohemian massif, NE-Austria): evidence from ion-microprobe (SHRIMP)-dating of zircon. Eur J Mineral 5:115

    Google Scholar 

  • Gebauer D, Williams IS, Compston W, Grünenfelder M (1989) The development of the central European continental crust since the early Archean based on conventional and ion-microprobe dating of up to 3.84 b.y. old detrital zircons. Tectonophysics 157:81–96

    Article  CAS  Google Scholar 

  • Gerdes A, Friedl G, Parrish RR, Finger F (2003) High resolution geochronology of Variscan granite emplacement: the South Bohemian Batholith. J Czech Geol Soc 48(1–2):53

    Google Scholar 

  • Harand G (1994) Mikroskopische Zirkonuntersuchungen an fünf granitoiden Gneisen der Böhmischen Masse als Vorstudie zur U–Pb Altersdatierung. MSc Thesis, Univ Salzburg

  • Klötzli US, Koller F, Scharbert S, Höck V (2001) Cadomian lower-crustal contributions to Variscan granite petrogenesis (south Bohemian pluton, Austria): constraints from zircon typology and geochronology, whole-rock, and feldspar Pb–Sr isotope systematics. J Petrol 42(9):1621–1642

    Article  Google Scholar 

  • Kröner A, Hegner E (1998) Geochemistry, single zircon ages and Sm-Nd systematics of granitoid rocks from the Gory Sovie (Owl Mts), Polish West Sudetes: Evidence for early Paleozoic arc-related plutonism. J Geol Soc Lond 155:711–724

    Google Scholar 

  • Kröner A, Greiling R, Reischmann T, Hussein IM, Stern RJ, Dürr S, Krüger J, Zimmer M (1987) Pan-African crustal evolution in the Nubian segment of northeast Africa. In: Kröner A (ed) Proterozoic lithosphere evolution. Am Geophys Union Geodyn Ser 17:235–257

    Google Scholar 

  • Kröner A, Hegner E, Jaeckel P (1998) Precambrian basement in the eastern part of the Bohemian massif and its possible origin and correlation. Acta Univ Carolinae Geol 42:289–290

    Google Scholar 

  • Krogh TE (1973) A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37:485–494

    Article  CAS  Google Scholar 

  • Krogh TE (1982) Improved accuracy of U–Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Acta 46:637–649

    Article  CAS  Google Scholar 

  • Linnemann U, Gehmlich M, Tichomirowa M, Buschmann B, Nasdala L, Jonas P, Luetzner H, Bombach K (2000) From Cadomian subduction to early Paleozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). Geol Soc Lond Spec Publ 179:131–153

    CAS  Google Scholar 

  • Liu TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian fold belt of Central Europe: Indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138

    CAS  Google Scholar 

  • Ludwig KR (1988) Isoplot for MS-DOS: a plotting and regression program for radiogenic- isotope data, for IBM-PC compatible computers, version 1.04. US Geol Surv Open-File Rep 88-557

  • Ludwig KR (1993) Isoplot, a plotting and regression program for radiogenic-isotope data, version 2.60. US Geol Survey Open-File Report, 91-445

  • Ludwig KR (2001) Isoplot/Ex: a geochronological toolkit for Microsoft Excel. Berkeley Geochron Center Spec Publ 1a

  • Matura A (1976) Hypothesen zum Bau und zur geologischen Geschichte des kristallinen Grundgebirges von Südwestmähren und dem niederösterreichischen Waldviertel. Jahrb Geol Bundes Wien 119:63–74

    Google Scholar 

  • Matura A (2003) Zur tektonischen Gliederung der variszischen Metamorphite im Waldviertel Niederösterreichs. Jahrb Geol Bundes Wien 143:221–225

    Google Scholar 

  • Nance RD, Murphy JB (1996) Basement isotopic signatures and Neoproterozoic paleogeography of Avalonian–Cadomian and related peri-Gondwana terranes of the circum-North Atlantic. Geol Soc Am Spec Paper 304:333–346

    Google Scholar 

  • O’Brien PJ, Carswell DA (1993) Tectonostratigraphic evolution of the Bohemian massif: evidence from high pressure metamorphic rocks. Geol Rundsch 82:531–555

    Google Scholar 

  • O’Brien PJ, Rötzler J (2003) High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. J Metamorph Geol 21:3–20

    Article  Google Scholar 

  • Paquette JL, Ménot RP, Pin C, Orsini JB (2003) Episodic and short-lived granitic pulses in a post-collisional setting: evidence from precise U–Pb zircon dating through a crustal cross-section in Corsica. Chem Geol 198(1–2):1–20

    Google Scholar 

  • Patočka F, Vlasimsky P, Blechova K (1993) Geochemistry of early Paleozoic volcanics of the Barrandian Basin (Bohemian Massif, Czech Republic); implications for paleotectonic reconstructions. Jahrb Geol Bundes Wien 136(4):873–896

    Google Scholar 

  • Pidgeon RT (1992) Recrystallisation of oscillatory zoned zircon; some geochronological and petrological implications. Contrib Mineral Petrol 110(4):463–472

    CAS  Google Scholar 

  • Pin C (1991) Central-Western Europe: major stages of development during Precambrian and Palaeozoic times. In: Dallmeyer RD, Lécorché JP (eds) The west African orogens and circum-Atlantic correlatives. Springer, Berlin Heidelberg New York, pp 295–306

  • Roddick JC (1987) Generalized numerical error analysis with applications to geochronology and thermodynamics. Geochim Cosmochim Acta 51:2129–2135

    Article  Google Scholar 

  • Schaltegger U, Gebauer D (1999) Pre-Alpine geochronology of the Central, Western and Southern Alps. Schweiz Mineral Petrogr Mitt 79:79–87

    CAS  Google Scholar 

  • Scharbert S, Batik P (1980) The age of the Thaya (Dyje) Pluton. Verh Geol Bundes Wien 3:325–331

    Google Scholar 

  • Siebel W, Raschka H, Irber W, Kreuzer H, Lenz KL, Hoehndorf A, Wendt I (1997) Early Palaeozoic acid magmatism in the Saxothuringian Belt; new insights from a geochemical and isotopic study of orthogneisses and metavolcanic rocks from the Fichtelgebirge, SE Germany. J Petrol 38:203–230

    Article  CAS  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  CAS  Google Scholar 

  • Stampfli GM, von Raumer JF, Borel GD, Bussy F (2001) Variscan and pre-Variscan evolution. In: Stampfli GM (ed) Geology of the Western Swiss Alps — a guide book. Mém Géol Lausanne 36:28–41

  • Steiger RH, Jäger E (1977) Subcommission on Geochronology Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  CAS  Google Scholar 

  • Suess FE (1926) Intrusionstektonik und Wandertektonik im variszischen Grundgebirge. Borntraeger Berlin

  • Tait JA, Bachtadse V, Franke W, Soffel HC (1997) Geodynamic evolution of the European Variscan fold belt: Palaeomagnetic and geological constraints. Geol Rundsch 86:585–598

    Article  Google Scholar 

  • Thiele O (1984) Zum Deckenbau und Achsenplan des Moldanubikums der südlichen Böhmischen Masse (Österreich). Jahrb Geol Bundes Wien 126:513–523

    Google Scholar 

  • Tichomirowa M, Gemlich M, Nasdala L (1997) Zirkonalter (207Pb/206Pb-evaporation, SHRIMP) von präkambrischen Quellen in den Inneren und Äußeren Graugneisen der Freiberger Kuppel (Osterzgebirge). Terra Nostra 97:185–189

    Google Scholar 

  • Turniak K, Mazur S, Wysoczanski R (2000) SHRIMP zircon geochronology and geochemistry of the Orlica-Snieznik gneisses (Variscan belt of Central Europe) and their tectonic implications. Geodynam Acta 13(5):293–312

    Article  Google Scholar 

  • Van Breemen O, Aftalion M, Bowes DR, Dudek A, Mísar Z, Povondra P, Vrana S (1982) Geochronological studies of the Bohemian Massif, Czechoslovakia and their significance in the evolution of Central Europe. Trans R Soc Edinb Earth Sci 75:89–108

    Google Scholar 

  • Von Raumer JF, Stampfli GM, Borel G, Bussy F (2002) Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int J Earth Sci 91:35–52

    Article  Google Scholar 

  • Von Raumer JF, Stampfli GM, Bussy F (2003) Gondwana-derived microcontinents; the constituents of the Variscan and Alpine collisional orogens. In: Murphy JB, Keppie JD (eds) Collisional orogenesis in the geological record and modern analogues. Tectonophysics 365(1–4):7–22

  • Waldmann L (1951) Das außeralpine Grundgebirge Österreichs. In: Schaffer FX (ed) Geologie von Österreich

  • Winchester JA, Pharaoh TC, Verniers J (2002) Palaeozoic amalgamation of central Europe. An introduction and synthesis of new results from recent geological and geophysical investigations. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geol Soc Lond Spec Publ 201:1–18

    Google Scholar 

  • Zeh A, Braetz H, Millar IL, Williams IS (2001) A combined zircon SHRIMP and Sm–Nd isotope study of high-grade paragneisses from the Mid-German Crystalline Rise; evidence for northern Gondwanan and Grenvillian provenance. J Geol Soc Lond 158(6):983–994

    Google Scholar 

  • Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Venjar Z (1999) Age constraints on the Cadomian evolution of the Teplá Barrandian unit (Bohemian massif) through electron microprobe dating of metamorphic monazite. Zeitschrift Deutsch Geol Ges 150:627–639

    Google Scholar 

Download references

Acknowledgements

Zircon analyses on the Sensitive High Resolution Ion Micro Probe mass spectrometer (SHRIMP II) were carried out at the Curtin University of Technology in Perth during two measurement campaigns of G. Friedl in January/February 1998 and March 1999. This work was financially supported through FWF grant 12248 (to Finger). SHRIMP II is operated by a WA university–government consortium with the support of the Australian Research Council. K. Ettinger (Graz) is thanked for providing BSE images, and G. Harrand for zircon hand-picking of sample DÜRN-TON for analysis. S. Mazur and G. Siebel provided competent and helpful reviews.

This paper is dedicated to Prof. G. Frasl (1924–2003), Professor of Geology and pioneer of Bohemian Massif research at Salzburg University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gertrude Friedl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedl, G., Finger, F., Paquette, JL. et al. Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages. Int J Earth Sci (Geol Rundsch) 93, 802–823 (2004). https://doi.org/10.1007/s00531-004-0420-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-004-0420-9

Keywords

Navigation