Skip to main content
Log in

Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

A non-homogeneous mixed local and nonlocal problem in divergence form is investigated for the validity of the global Calderón–Zygmund estimate for the weak solution to the Dirichlet problem of a nonlinear elliptic equation. We establish an optimal Calderón–Zygmund theory by finding not only a minimal regularity requirement on the mixed local and nonlocal operators but also a lower level of geometric assumption on the boundary of the domain for the global gradient estimate. More precisely, assuming that the nonlinearity of the local operator, whose prototype is the classical \((-\Delta _p)^1\)-Laplace operator with \(1<p<\infty \), is measurable in one variable and has a small BMO assumption for the other variables, while the singular kernel associated with the nonlocal \((-\Delta _q)^s\)-Laplace operator with \(0<s<1<q<\infty \) is merely measurable, and that the boundary of the domain is sufficiently flat in Reifenberg sense, we prove that the gradient of the solution is as integrable as that of the associated non-homogeneous term in the divergence form. Our regularity theory reported here could be a nice addition for higher integrability of the gradient to the Hölder continuity of the gradient in De Filippis and Mingione (Math Ann https://doi.org/10.1007/s00208-022-02512-7, 2022) regarding mixed local and nonlocal problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Acerbi, E., Mingione, G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136(2), 285–320 (2007)

    Article  MathSciNet  Google Scholar 

  2. Baasandorj, S., Byun, S.-S., Lee, H.-S.: Global gradient estimates for a general class of quasilinear elliptic equations with Orlicz growth. Proc. Am. Math. Soc. 149(10), 4189–4206 (2021)

    Article  MathSciNet  Google Scholar 

  3. Balci, A. Kh., Byun, S.-S., Diening, L., Lee, H.-S.: Global maximal regularity for equations with degenerate weights, arXiv preprint arXiv:2201.03524 (2022)

  4. Bao, J., Xiong, J.: Sharp regularity for elliptic systems associated with transmission problems. Potential Anal. 39(2), 169–194 (2013)

    Article  MathSciNet  Google Scholar 

  5. Biagi, S., Dipierro, S., Valdinoci, E., Vecchi, E.: Semilinear elliptic equations involving mixed local and nonlocal operators. Proc. R. Soc. Edinb. Sect. A 151(5), 1611–1641 (2021)

    Article  MathSciNet  Google Scholar 

  6. Biagi, S., Dipierro, S., Valdinoci, E., Vecchi, E.: Mixed local and nonlocal elliptic operators: regularity and maximum principles. Commun. Partial Differ. Equ. 47(3), 585–629 (2022)

    Article  MathSciNet  Google Scholar 

  7. Biagi, S., Dipierro, S., Valdinoci, E., Vecchi, E.: A Hong–Krahn–Szegö inequality for mixed local and nonlocal operators. Math. Eng. 5(1), Paper No. 014, 25 (2023)

  8. Brasco, L., Lindgren, E., Schikorra, A.: Higher Hölder regularity for the fractional \(p\)-Laplacian in the superquadratic case. Adv. Math. 338, 782–846 (2018)

    Article  MathSciNet  Google Scholar 

  9. Bui, T.A., Duong, X.T.: Global Lorentz estimates for nonlinear parabolic equations on nonsmooth domains. Calc. Var. Partial Differ. Equ. 56(2), Paper No. 47, 24 (2017)

  10. Byun, S.-S., Kim, H., Ok, J.: Local hölder continuity for fractional nonlocal equations with general growth. Math. Ann. (2023) https://doi.org/10.1007/s00208-022-02472-y (to appear)

  11. Byun, S.-S., Kim, K.: \({L}^{q}\) estimates for nonlocal p-Laplacian type equations with BMO kernel coefficients in divergence form, arXiv:2303.08517 (2023)

  12. Byun, S.-S., Kim, K., Kumar, D.: Regularity results for a class of nonlocal double phase equations with VMO coefficients, arXiv:2303.07749 (2023) (to appear in Pub. Math)

  13. Byun, S.-S., Kim, Y.: Elliptic equations with measurable nonlinearities in nonsmooth domains. Adv. Math. 288, 152–200 (2016)

    Article  MathSciNet  Google Scholar 

  14. Byun, S.-S., Lee, H.-S.: Optimal regularity for elliptic equations with measurable nonlinearities under nonstandard growth. Int. Math. Res. Not. IMRN (2023). https://doi.org/10.1093/imrn/rnad040, to appear

  15. Byun, S.-S., Lee, H.-S., Song, K.: Regularity results for mixed local and nonlocal double phase functionals, arXiv preprint arXiv:2301.06234 (2023)

  16. Byun, S.-S., Ok, J., Song, K.: Hölder regularity for weak solutions to nonlocal double phase problems. J. Math. Pures Appl. (9) 168, 110–142 (2022)

    Article  MathSciNet  Google Scholar 

  17. Byun, S.-S., Song, K.: Mixed local and nonlocal equations with measure data. Calc. Var. Partial Differ. Equ. 62(1), Paper No. 14, 35 (2023)

  18. Byun, S.-S., Wang, L.: Elliptic equations with BMO coefficients in Reifenberg domains. Commun. Pure Appl. Math. 57(10), 1283–1310 (2004)

    Article  MathSciNet  Google Scholar 

  19. Byun, S.-S., Wang, L.: Elliptic equations with measurable coefficients in Reifenberg domains. Adv. Math. 225(5), 2648–2673 (2010)

    Article  MathSciNet  Google Scholar 

  20. Caffarelli, L., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1–21 (1998)

    Article  Google Scholar 

  21. Caffarelli, L., Silvestre, L.: Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200(1), 59–88 (2011)

    Article  MathSciNet  Google Scholar 

  22. Chaker, J., Kim, M., Weidner, M.: Regularity for nonlocal problems with non-standard growth. Calc. Var. Partial Differ. Equ. 61(6), Paper No. 227, 31 (2022)

  23. Cho, Y.: Global gradient estimates for divergence-type elliptic problems involving general nonlinear operators. J. Differ. Equ. 264(10), 6152–6190 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  24. Colombo, M., Mingione, G.: Calderón–Zygmund estimates and non-uniformly elliptic operators. J. Funct. Anal. 270(4), 1416–1478 (2016)

    Article  MathSciNet  Google Scholar 

  25. De Filippis, C., Mingione, G.: Gradient regularity in mixed local and nonlocal problems, Math. Ann. (2022). https://doi.org/10.1007/s00208-022-02512-7, to appear

  26. De Filippis, C., Palatucci, G.: Hölder regularity for nonlocal double phase equations. J. Differ. Equ. 267(1), 547–586 (2019)

    Article  ADS  Google Scholar 

  27. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. Inst. H. Poincaré C Anal. Non Linéaire 33(5), 1279–1299 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  28. Di Fazio, G.: \(L^p\) estimates for divergence form elliptic equations with discontinuous coefficients. Boll. Un. Mat. Ital. A (7) 10(2), 409–420 (1996)

    MathSciNet  Google Scholar 

  29. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  30. Diening, L., Fornasier, M., Tomasi, R., Wank, M.: A relaxed Kačanov iteration for the \(p\)-Poisson problem. Numer. Math. 145(1), 1–34 (2020)

    Article  MathSciNet  Google Scholar 

  31. Diening, L., Nowak, S.: Calderón–Zygmund estimates for the fractional \(p\)-Laplacian, arXiv:2303.02116 (2023)

  32. Dipierro, S., Proietti Lippi, E., Valdinoci, E.: (Non) local logistic equations with Neumann conditions. Ann. Inst. H. Poincaré C Anal. Non Linéaire (to appear)

  33. Dipierro, S., Valdinoci, E.: Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes. Phys. A 575, Paper No. 126052, 20 (2021)

  34. Dong, H., Kim, D.: Elliptic equations in divergence form with partially BMO coefficients. Arch. Ration. Mech. Anal. 196(1), 25–70 (2010)

    Article  MathSciNet  Google Scholar 

  35. Elschner, J., Rehberg, J., Schmidt, G.: Optimal regularity for elliptic transmission problems including \(C^1\) interfaces. Interfaces Free Bound. 9(2), 233–252 (2007)

    Article  MathSciNet  Google Scholar 

  36. Fall, M.M., Mengesha, T., Schikorra, A., Yeepo, S.: Calderón–Zygmund theory for non-convolution type nonlocal equations with continuous coefficient. Partial Differ. Equ. Appl. 3(2), Paper No. 24, 27 (2022)

  37. Garain, P., Kinnunen, J.: On the regularity theory for mixed local and nonlocal quasilinear elliptic equations. Trans. Am. Math. Soc. 375(8), 5393–5423 (2022)

    MathSciNet  Google Scholar 

  38. Garain, P., Lindgren, E.: Higher Hölder regularity for mixed local and nonlocal degenerate elliptic equations. Calc. Var. Partial Differ. Equ. 62(2), Paper No. 67, 36 (2023)

  39. Giacomoni, J., Kumar, D., Sreenadh, K.: Interior and boundary regularity results for strongly nonhomogeneous \(p, q\)-fractional problems. Adv. Calc. Var. 16(2), 467–501 (2021)

    Article  MathSciNet  Google Scholar 

  40. Giacomoni, J., Kumar, D., Sreenadh, K.: Global regularity results for non-homogeneous growth fractional problems. J. Geom. Anal. 32(1), Paper No. 36, pp. 41 (2022)

  41. Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional \(p\)-Laplacian. Rev. Mat. Iberoam. 32(4), 1353–1392 (2016)

    Article  MathSciNet  Google Scholar 

  42. Kenig, C.E., Toro, T.: Free boundary regularity for harmonic measures and Poisson kernels. Ann. Math. (2) 150(2), 369–454 (1999)

    Article  MathSciNet  Google Scholar 

  43. Kilpeläinen, T., Koskela, P.: Global integrability of the gradients of solutions to partial differential equations. Nonlinear Anal. 23(7), 899–909 (1994)

    Article  MathSciNet  Google Scholar 

  44. Kim, D., Krylov, N.V.: Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others. SIAM J. Math. Anal. 39(2), 489–506 (2007)

    Article  MathSciNet  Google Scholar 

  45. Kim, Y.: Gradient estimates for elliptic equations with measurable nonlinearities. J. Math. Pures Appl. (9) 114, 118–145 (2018)

    Article  MathSciNet  Google Scholar 

  46. Kim, Y., Ryu, S.: Global gradient estimates for parabolic equations with measurable nonlinearities. Nonlinear Anal. 164, 77–99 (2017)

    Article  MathSciNet  Google Scholar 

  47. Kinnunen, J., Zhou, S.: A local estimate for nonlinear equations with discontinuous coefficients. Commun. Partial Differ. Equ. 24(11–12), 2043–2068 (1999)

    Article  MathSciNet  Google Scholar 

  48. Korvenpää, J., Kuusi, T., Palatucci, G.: The obstacle problem for nonlinear integro-differential operators. Calc. Var. Partial Differ. Equ. 55(3), Art. 63, 29 (2016)

  49. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal self-improving properties. Anal. PDE 8(1), 57–114 (2015)

    Article  MathSciNet  Google Scholar 

  50. Lemenant, A., Milakis, E., Spinolo, L.V.: On the extension property of Reifenberg-flat domains. Ann. Acad. Sci. Fenn. Math. 39(1), 51–71 (2014)

    Article  MathSciNet  Google Scholar 

  51. Martio, O.: Reflection principle for solutions of elliptic partial differential equations and quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 6(1), 179–187 (1981)

    Article  MathSciNet  Google Scholar 

  52. Mengesha, T., Phuc, N.C.: Global estimates for quasilinear elliptic equations on Reifenberg flat domains. Arch. Ration. Mech. Anal. 203(1), 189–216 (2012)

    Article  MathSciNet  Google Scholar 

  53. Mengesha, T., Schikorra, A., Yeepo, S.: Calderon–Zygmund type estimates for nonlocal PDE with Hölder continuous kernel. Adv. Math. 383, Paper No. 107692, 64 (2021)

  54. Meyers, N.G.: An \(L^{p}\)-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17, 189–206 (1963)

    MathSciNet  Google Scholar 

  55. Nakamura, K.: Harnack’s estimate for a mixed local-nonlocal doubly nonlinear parabolic equation. Calc. Var. Partial Differ. Equ. 62(2), Paper No. 40, 45 (2023)

  56. Nowak, S.: Higher integrability for nonlinear nonlocal equations with irregular kernel. In: Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs, Advanced Analytic Geometry, vol. 3, pp. 459–492. De Gruyter, Berlin (2021)

  57. Phuc, N.C.: Nonlinear Muckenhoupt–Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations. Adv. Math. 250, 387–419 (2014)

    Article  MathSciNet  Google Scholar 

  58. Shang, B., Zhang, C.: Hölder regularity for mixed local and nonlocal \( p\)-Laplace parabolic equations, arXiv:2112.08698 (2021)

Download references

Acknowledgements

The authors would like to thank the anonymous referee for a very careful reading of the earlier version of the manuscript and his/her valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar.

Additional information

Communicated by Laszlo Szekelyhidi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.-S. Byun was supported by NRF-2022R1A2C1009312, D. Kumar was supported by NRF-2021R1A4A1027378 and H.-S. Lee was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through (GRK 2235/2 2021 - 282638148) at Bielefeld University.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, SS., Kumar, D. & Lee, HS. Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities. Calc. Var. 63, 27 (2024). https://doi.org/10.1007/s00526-023-02631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02631-2

Mathematics Subject Classification

Navigation