Skip to main content
Log in

Interior \(W^{2,p}\) estimate for small perturbations to the complex Monge–AmpÈre equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \(w_0\) be a bounded, \(C^3\), strictly plurisubharmonic function defined on \(B_1\subset {\mathbb {C}}^n\). Then \(w_0\) has a neighborhood in \(L^{\infty }(B_1)\) with the following property: for any continuous, plurisubharmonic function u in this neighborhood solving \(1-\varepsilon \le MA(u)\le 1+\varepsilon \), one has \(u\in W^{2,p}(B_{\frac{1}{2}})\), as long as \(\varepsilon >0\) is small enough depending only on n and p. This partially generalizes Caffarelli’s interior \(W^{2,p}\) estimates for real Monge–Ampère to the complex version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge–Ampère equation. Invent. Math. 37, 1–44 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blocki, Z.: Interior regularity of the degenerate Monge–Ampère equation. Bull. Aust. Math. Soc. 68, 81–92 (2003)

    Article  MATH  Google Scholar 

  3. Blocki, Z.: On the regularity of the complex Monge–Ampère operator. In: Complex Geo-metric Analysis in Pohang (1997), Contemporary Mathematics, vol. 222, pp. 181–189. American Mathematical Society, Providence (1999)

  4. Caffarelli, L.A.: Interior \(W^{2, p}\) estimates for solutions of the Monge–Ampère equation. Ann. Math. 131(1), 135–150 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L.A., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations. I. Monge–Ampère equations. Commun. Pure. Appl. Math. 37, 369–402 (1984)

    Article  MATH  Google Scholar 

  6. Caffarelli, L.A., Kohn, J.J., Nirenbger, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations. II. Complex Monge–Ampère and uniformly elliptic equations. Commun. Pure. Appl. Math. 38, 209–252 (1985)

    Article  MATH  Google Scholar 

  7. Chen, X.-X., Cheng, J.: On the existence of constant scalar curvature Kähler metrics (I): Apriori estimates. J. Am. Math. Soc. 34(4), 909–936 (2021). arXiv:1712.06679

    Article  MathSciNet  MATH  Google Scholar 

  8. Chern, S.S., Levine, H., Nirenberg, L.: Intrinsic norms on a complex manifold. Global Analysis (papers in honor of K. Kodaira). University of Tokyo Press, pp. 119–139 (1969)

  9. Dinew, S., Kołodziej, S.: A priori estimates for complex Hessian equations. Anal. PDE 7(1), 227–244 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, No. 2, vol. 224. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  11. He, W.Y.: On the regularity of complex Monge–Ampère equation. Proc. Am. Math. Soc. 140(5), 1719–1727 (2012)

    Article  MATH  Google Scholar 

  12. Ivochikina, N.M.: Construction of aprioru bounds for convex solutions of the Monge–Ampère equation by integral methods. Ukr. Math. J. 30, 32–38 (1978)

    Article  Google Scholar 

  13. Kolodziej, S.: The Monge–Ampère equation on compact Kähler manifolds. Indiana Univ. Math. J. 52(3), 667–686 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, C., Li, J., Zhang, X.: A \(C^{2, \alpha }\) estimate of the complex Monge-Ampère equation. J. Funct. Anal. 275(1), 149–169 (2018)

    Article  MathSciNet  Google Scholar 

  15. Pogorelov, A.V.: The regularity of the generalized solutions of the equation det\(({\partial ^ 2} u/\partial {x^ i}\partial {x^ j})=\varphi ({x^ 1},{x^ 2},\ldots ,{x^ n})> 0\). Dokl. Akad. Nauk SSSR 200, 534–537 (1971)

    MathSciNet  Google Scholar 

  16. Pogorelov, A.V.: The Minkowski Multidimensional Problem. Wiley, New York (1978)

    MATH  Google Scholar 

  17. Savin, O.: Small perturbation solutions for elliptic equations. Commun. PDE 73(4), 557–578 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schulz, F.: A \(C^2\) estimate for solutions of complex Monge–Ampère equations. J. Reine Angew. Math. 348, 88–93 (1984)

    MathSciNet  MATH  Google Scholar 

  19. Wang, Y.: A Liouville Theorem for the Complex Monge–Ampère Equation. Preprint arXiv:1303.2403 (2013)

  20. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I. Commun. Pure Appl. Math. 31, 339–441 (1978)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingrui Cheng.

Additional information

Communicated by Laszlo Szekelyhidi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Xu, Y. Interior \(W^{2,p}\) estimate for small perturbations to the complex Monge–AmpÈre equation. Calc. Var. 62, 231 (2023). https://doi.org/10.1007/s00526-023-02571-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02571-x

Navigation