Skip to main content
Log in

Boundary regularity for viscosity solutions of nonlinear singular elliptic equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we establish boundary regularity for viscosity solutions of nonlinear singular elliptic equations

$$\begin{aligned} \left\{ \begin{array}{rclll} F\left( D^2u,Du,u,\frac{u_{x_n}}{x_n},\frac{u}{x_n^2},x\right) &{}=&{}f(x)&{}\textrm{in}&{}B'_1\times (0,1),\\ u(x)&{}=&{}\phi (x')&{}\textrm{on}&{}B'_1\times \{0\}. \end{array}\right. \end{aligned}$$

We prove that if there exists a smooth approximation solution \(u_*\) which satisfies \(u-u_*=O(x_n^\mu )\), then for any \(\epsilon >0\), \(u\in C^{\mu -\epsilon }\) up to the boundary \(\{x_n=0\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, S., Silvestre, L.: Unique continuation for fully nonlinear elliptic equations. Math. Res. Lett. 18(5), 921–926 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Armstrong, S., Silvestre, L., Smart, C.: Partial regularity of solutions of fully nonlinear uniformly elliptic equations. Commun. Pure Appl. Math. 65(8), 1169–1184 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng, S.Y., Yau, S.T.: On the regularity of the Monge–Ampère equation \(\rm det \frac{\partial ^2u}{\partial x_i\partial x_j}=F(x, u)\). Commun. Pure Appl. Math. 30(1), 41–68 (1977)

    Article  Google Scholar 

  4. Collins, T.: \(C^{2,\alpha }\) estimates for nonlinear elliptic equations of twisted type. Calc. Var. Partial Differ. Equ. 55(1), 1–11 (2016)

    Article  Google Scholar 

  5. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35(3), 333–362 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Han, Q., Jiang, X.M.: Boundary Expansions for Minimal Graphs in the Hyperbolic Space. arXiv:https://arxiv.org/abs/1412.7608 (2014)

  7. Han, Q., Shen, W.: Boundary behaviors for Liouville’s equation in planar singular domains. J. Funct. Anal. 274(6), 1790–1824 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jian, H.Y., Wang, X.J.: Bernstein theorem and regularity for a class of Monge–Ampère equation. J. Differ. Geom. 93(3), 431–469 (2013)

    MATH  Google Scholar 

  9. Jian, H.Y., Wang, X.J.: Optimal boundary regularity for nonlinear singular elliptic equations. Adv. Math. 251, 111–126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jian, H.Y., Wang, X.J., Zhao, Y.W.: Global smoothness for a singular Monge–Ampère equation. J. Differ. Equ. 263(11), 7250–7262 (2017)

    Article  MATH  Google Scholar 

  11. Jian, H.Y., Lu, J., Wang, X.J.: A boundary expansion of solutions to nonlinear singular elliptic equations. Sci. China Math. 65(1), 9–30 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, X., Xiao, L.: Optimal regularity of constant curvature graphs in Hyperbolic space. Calc. Var. Partial Differ. Equ. 58(4), 1–22 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kichenassamy, S.: Boundary behavior in the Loewner–Nirenberg problem. J. Funct. Anal. 222(1), 98–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kohn, J.J., Nirenberg, L.: Degenerate elliptic-parabolic equations of second order. Commun. Pure Appl. Math. 20, 797–872 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations. Izv. Akad. Nauk SSSR Ser. Mat. 46(3), 487–523 (1982)

    MathSciNet  MATH  Google Scholar 

  16. Leonori, T., Porretta, A.: Gradient bounds for elliptic problems singular at the boundary. Arch. Ration. Mech. Anal. 202(2), 663–705 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li Y.Y., Nguyen, L., Xiong, J.: Regularity of viscosity solutions of the \(\sigma _k\)-Loewner–Nirenberg problem. arXiv:https://arxiv.org/abs/2203.05254 (2022)

  18. Lin, F.H.: On the Dirichlet problem for minimal graphs in hyperbolic space. Invent Math. 96(3), 593–612 (1989). Erratum: 187(3), 755–757 (2012)

  19. Lin, F.H., Wang, L.H.: A class of fully nonlinear elliptic equations with singularity at the boundary. J. Geom. Anal. 8(4), 583–598 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Loewner, C., Nirenberg, L.: Partial differential equations invariant under conformal or projective transformations. In: Contributions to Analysis, pp. 245–272. Academic Press, New York (1974)

  21. Oleĭnik, O.A., Radkevič, E.V.: Second Order Equations with Nonnegative Characteristic Form. Translated from the Russian by Paul C. Fife, vii+259 pp. Plenum Press, New York (1973)

  22. Prazeres, D., Teixeira, E.V.: Asymptotics and regularity of flat solutions to fully nonlinear elliptic problems. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 15, 485–500 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Savin, O.: Small perturbation solutions for elliptic equations. Commun. Partial Differ. Equ. 32(4–6), 557–578 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Silvestre, L., Sirakov, B.: Boundary regularity for viscosity solutions of fully nonlinear elliptic equations. Commun. Partial Differ. Equ. 39(9), 1694–1717 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Y.: Small perturbation solutions for parabolic equations. Indiana Univ. Math. J. 62(2), 671–697 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to warmly thank Professor Jingang Xiong for his patient guidance and constant encouragement, and for many insightful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhang.

Additional information

Communicated by Laszlo Szekelyhidi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

We give the proof of Proposition 2.1, which is based on the following estimate of the oscillation of a flat solution [23, Proposition 3.3]. Recall the hypotheses \((\mathrm {H1^\circ })\)\((\mathrm {H3^\circ })\) in Sect. 2.

Proposition A.1

Assume \(F\in C^1\) in \(\mathcal {U}_{1,\delta }\), satisfies \((\mathrm {H1^\circ })\), \((\mathrm {H2^\circ })\), and

$$\begin{aligned} F(0,0,0,x)=0,\quad \quad |F_p(M,p,z,x)|\le \kappa \quad \text {in}\; \mathcal {U}_{1,\delta }. \end{aligned}$$

There exists small constants \(c,\nu ,\beta \), depending only on \(n,\lambda ,\Lambda \) and \(\kappa \), such that if u is a viscosity solution of (2.1) with \(u(0)=0\) and for some k

$$\begin{aligned} \Vert u\Vert _{L^\infty (B_1)}\le \delta '\le c2^{-2k}\delta ,\quad \quad |F(D^2u,Du,u,x)|\le \nu \delta ' \end{aligned}$$

and

$$\begin{aligned} |F_z(M,p,z,x)|\le \nu \quad \text {in} \,\,\,\, \mathcal {U}_{1,\delta }, \end{aligned}$$

then

$$\begin{aligned} \Vert u\Vert _{L^\infty (B_{\rho })}\le 2\rho ^\beta \delta ',\quad \text {for any}\; \rho \ge 2^{-k-1}. \end{aligned}$$

Proof of Proposition 2.1

Let u be a viscosity solution of (2.1) with f satisfying (2.2). In this proof we refer to positive constants depending only on \(n,\lambda ,\Lambda ,\alpha _0,\alpha , K\) and \(\psi \) as universal constants.

Let

$$\begin{aligned} w(x)=\frac{1}{r^{2+\alpha }}(u(rx)-P(N,q,t,rx)). \end{aligned}$$

The function \(v:=w-w(0)\) is a solution of

$$\begin{aligned} {\tilde{F}}(D^2v,Dv,v,x)={\tilde{f}}(x),\quad \quad \Vert v\Vert _{L^\infty (B_1)}\le 2, \end{aligned}$$

where

$$\begin{aligned} {\tilde{F}}(M,p,z,x):= & {} r^{-\alpha }\left[F(r^\alpha M+N, r^{1+\alpha }p+q+rNx, r^{2+\alpha }(z+w(0))+P(N,q,t,rx),rx)\right.\\{} & {} -\left.F(N,q+rNx,r^{2+\alpha }w(0)+P(N,q,t,rx),rx)\right] \end{aligned}$$

and

$$\begin{aligned} {\tilde{f}}(x)=r^{-\alpha }\left[f(rx)-F(N,q+rNx,r^{2+\alpha }w(0)+P(N,q,t,rx),rx)\right]. \end{aligned}$$

By \((\mathrm {H3^\circ })\),

$$\begin{aligned} {|}{\tilde{f}}(x)|= & {} r^{-\alpha }\left| f(rx)-f(0)-\left[ F(N,q+rNx,r^{2+\alpha }w(0)\right. \right. \\{} & {} \left. \left. +P(N,q,t,rx),rx)-F(N,q,t,0)\right] \right| \\\le & {} [f]_{C^{0,\alpha _0}}r^{\alpha _0-\alpha }+K\left(|rNx|+|r^{2+\alpha }w(0)+P(N,q,t,rx)-t|+|rx|\right)\\\le & {} C(n)Kr^{\alpha _0-\alpha }. \end{aligned}$$

Obviously \({\tilde{F}}(0,0,0,x)=0\) and \({\tilde{F}}\) satisfies \((\mathrm {H1^\circ })\), \((\mathrm {H2^\circ })\) with \({\tilde{\delta }}:=r^{-\alpha }\delta /4\). By \((\mathrm {H3^\circ })\) we have

$$\begin{aligned} r|{\tilde{F}}_p(M,p,z,x)|+|{\tilde{F}}_z(M,p,z,x)|\le Kr^2\quad \text {for}\Vert M\Vert +|p|+|z|\le {\tilde{\delta }}. \end{aligned}$$

Choose \(r\le r_0\), where \(r_0\) is small depending only on \(\delta \) and universal constants, and then \(k\ge 1\) such that \(2^{2k+1}\le cr^{-\alpha }\delta <2^{2k+3}\), where c is universal, given by Proposition A.1, then

$$\begin{aligned} \Vert v\Vert _{L^\infty (B_1)}\le 2\le c2^{-2k}{\tilde{\delta }}. \end{aligned}$$

By Proposition A.1,

$$\begin{aligned} \Vert v\Vert _{L^\infty (B_\rho )}\le 4\rho ^\beta \quad \text {for}\; \rho \ge 2^{-k-1} \end{aligned}$$

for some \(\beta >0\) universal. Replacing v with \(w-w(x_0)\) for \(x_0\in B_{1/2}\), we conclude that

$$\begin{aligned} |w(x_1)-w(x_2)|\le 4|x_1-x_2|^\beta \quad \text {for any}\; x_1,x_2\in B_{1/2}, |x_1-x_2|\ge C\delta ^{-\frac{1}{2}}r^{\frac{\alpha }{2}} \end{aligned}$$
(A.1)

for some \(C>0\) universal.

We next prove that there exist \(\eta \in (0,1)\) universal and \({\tilde{N}},{\tilde{q}},{\tilde{t}}\) such that

$$\begin{aligned} \Vert w-P({\tilde{N}},{\tilde{q}},{\tilde{t}},x)\Vert _{L^\infty (B_\eta )}\le \eta ^{2+\alpha } \end{aligned}$$
(A.2)

with

$$\begin{aligned} F(r^\alpha {\tilde{N}}+N,r^{1+\alpha }{\tilde{q}}+q,r^{2+\alpha }{\tilde{t}}+t,0)=f(0). \end{aligned}$$
(A.3)

This implies the conclusion of Proposition 2.1.

Assume by contradiction that the claim does not hold. Then there exists a sequence of \(r_k\rightarrow 0\) and corresponding \(F_k,f_k,w_k,N_k,q_k,t_k\) for which no \({\tilde{N}},{\tilde{q}},{\tilde{t}}\) satisfy (A.2) and (A.3). By \(({\textrm{H3}}^\circ )\), (2.2) and (A.1), there exists a subsequence \(\{k_j\}_{j\ge 1}\), which we still denote by \(\{k\}_{k\ge 1}\), such that

$$\begin{aligned} F_k\rightarrow F_*,\quad D_MF_k\rightarrow D_MF_*,\quad f_k\rightarrow f_*\quad \textrm{uniformly}, \\ w_k\rightarrow w_*\quad \text {uniformly in}B_{1/2} \\ N_k\rightarrow N_*,\quad q_k\rightarrow q_*,\quad t_k\rightarrow t_*. \end{aligned}$$

We claim that \(w_*\) is viscosity solution of

$$\begin{aligned} \sum _{i,j}\frac{\partial F_*}{\partial M_{ij}}(N_*,q_*,t_*,0)D_{ij}w_*=0. \end{aligned}$$
(A.4)

Assume by contradiction that there is a smooth function \(\varphi +\epsilon |x-x_*|^2\) which touches \(w_*\) from below at \(x_*\in B_{1/2}\) and

$$\begin{aligned} \sum _{i,j}\frac{\partial F_*}{\partial M_{ij}}(N_*,q_*,t_*,0)D_{ij}\varphi (x_*)>\epsilon >0. \end{aligned}$$

Then \(\varphi +const\) touches \(w_k\) from below at \(x_k\) with \(x_k\rightarrow x_*\). Hence,

$$\begin{aligned} Kr_k^{\alpha _0-\alpha }\ge & {} r_k^{-\alpha }(f_k(r_kx_k)-f_k(0))\\\ge & {} \left[ F_k\!\left( r_k^\alpha D^2\!\varphi (x_k)+N_k, r_k^{1+\alpha }D\varphi (x_k)+q_k+r_kN_kx_k, r_k^{2+\alpha }(\varphi (x_k)+c)\right. \right. \\{} & {} \left. \left. +P(N_k,q_k,t_k,r_kx_k),r_kx_k\right) -F_k(N_k,q_k,t_k,0)\right] \cdot r_k^{-\alpha }\\\ge & {} \sum _{i,j}\frac{\partial F_k}{\partial M_{ij}}(N_k,q_k,t_k,0)D_{ij}\varphi (x_k)-C(\varphi )\psi \left(C(\varphi )r_k^\alpha \right)\\{} & {} -C(K,\varphi )r_k^{1-\alpha }>\epsilon /2\quad \text {for}\;k\;\text {large}, \end{aligned}$$

which is a contradiction as \(k\rightarrow \infty \). Hence (A.4) is true, which implies that there exist \(N',q',t'\) and \(\eta \in (0,1)\) universal such that

$$\begin{aligned} \sum _{i,j}\frac{\partial F_*}{\partial M_{ij}}(N_*,q_*,t_*,0)N'_{ij}=0 \end{aligned}$$
(A.5)

and

$$\begin{aligned} \Vert w_*-P(N',q',t',x)\Vert _{L^\infty (B_\eta )}\le \frac{\eta ^{2+\alpha }}{3}. \end{aligned}$$
(A.6)

We claim that there exists \(s_k\in {\mathbb {R}}\) such that for \({\tilde{N}}_k=N'+s_kI_n\) we have

$$\begin{aligned} I_k:=F_k(r_k^\alpha {\tilde{N}}_k+N_k,r_k^{1+\alpha }q'+q_k,r_k^{2+\alpha }t'+t_k,0)-f_k(0)=0. \end{aligned}$$

Indeed,

$$\begin{aligned} r_k^{-\alpha }I_k= & {} r_k^{-\alpha }\left[ F_k(r_k^\alpha {\tilde{N}}_k+N_k,r_k^{1+\alpha }q'+q_k,r_k^{2+\alpha }t'+t_k,0)\right. \\{} & {} \quad \left. -F_k(r_k^\alpha N'+N_k,r_k^{1+\alpha }q'+q_k,r_k^{2+\alpha }t'+t_k,0)\right. \\{} & {} \quad +\left. F_k(r_k^\alpha N'+N_k,r_k^{1+\alpha }q'+q_k,r_k^{2+\alpha }t'+t_k,0)-F_k(N_k,q_k,t_k,0)\right] \\= & {} J_k+\sum _{i,j}\frac{\partial F_k}{\partial M_{ij}}(N_k,q_k,t_k,0)N'_{ij}+O\left(\psi \left(Cr_k^\alpha \right)\right)+O(r_k), \end{aligned}$$

where \(C>0\) depends only on \(n,\lambda \) and \(\Lambda \), and

$$\begin{aligned} \Lambda |s_k|\ge |J_k|\ge \lambda |s_k|. \end{aligned}$$

Hence by (A.5), for k large there exists \(|s_k|\le \frac{\eta ^{2+\alpha }}{3}\) such that \(r_k^{-\alpha }I_k=0\). It follows that

$$\begin{aligned}{} & {} \Vert w_k-P({\tilde{N}}_k,q',t',x)\Vert _{L^\infty (B_\eta )}\le \Vert w_k-w_*\Vert _{L^\infty (B_{1/2})} +\Vert w_*\\{} & {} \quad -P(N',q',t',x)\Vert _{L^\infty (B_\eta )}+|s_k|\le \eta ^{2+\alpha } \end{aligned}$$

by (A.6). We reach a contradiction. \(\square \)

Appendix B

In this section give the proof of Theorems 4.1 and 4.3 in Sect. 4. Recall the hypotheses \(\mathrm {(H4)}\) and \(\mathrm {(H5)}\) on F in these theorems. Also, in Theorem 4.1 we assume \(F\in \mathcal {A}^1\) (i.e. F satisfies \(\mathrm {(H1)}\)\(\mathrm {(H3)}\) in \(\mathcal {U}_\delta =\mathcal {U}_\delta (0)\) with \(m=1\)); in Theorem 4.3 we assume \(F\in \mathcal {A}^m\) where \(\mu \in (m+1,m+2]\). We refer to positive constants depending only on the constants \(n,\lambda ,\Lambda ,K,b\) and \(\mu \) in the assumptions of these theorems as universal constants.

Using the hypotheses \(\mathrm {(H5)}\), and \(\mathrm {(H2)}\), \(\mathrm {(H3)}\) in \(\mathcal {U}_\delta \), it is straightforward to prove the lemma below. Recall the notation \({\bar{p}}=(p,z)\) in (4.1).

Lemma B.1

Assume \(f\in C^{0,1}({\bar{\Omega }})\) and

$$\begin{aligned} |f(x',0)|\le b\delta /8\quad \text {for}\; x'\in B'_1. \end{aligned}$$

Then for each \((a,{\bar{p}},x')\in U_{\!c_0\delta }:=\{\Vert a\Vert ,|{\bar{p}}|\le c_0\delta , x'\!\!\in \!B'_1\}\), the equation

$$\begin{aligned} g(a,r,{\bar{p}},x')=f(x',0) \end{aligned}$$

has a unique solution \(r=\xi (a,{\bar{p}},x')\) with

$$\begin{aligned} |\xi (a,{\bar{p}},x')|\le C\left(\Vert a\Vert +|{\bar{p}}|+|f(x',0)|\right), \end{aligned}$$
(B.1)

where \(c_0\in (0,1), C>0\) are universal. Moreover, the function \(r=\xi (a,{\bar{p}},x')\) is increasing and Lipschitz continuous with respect to a; Furthermore, for any \((a_i,{\bar{p}}_i,x_i)\in U_{\!c_0\delta }, i=1,2\) with \(a_1<a_2\) (i.e., \(a_2-a_1\) is a positive, symmetric matrix), we have

$$\begin{aligned} 0<\xi (a_2,{\bar{p}}_2,x'_2)-\xi (a_1,{\bar{p}}_1,x'_1)\le C\Vert a_2-a_1\Vert \end{aligned}$$
(B.2)

provided that

$$\begin{aligned} C\left\rbrace |{\bar{p}}_2-{\bar{p}}_1|+(\Vert a_1\Vert +|{\bar{p}}_1|+\Vert f\Vert _{C^{0,1}})|x'_2-x'_1|\right\lbrace \le \Vert a_2-a_1\Vert , \end{aligned}$$

where \(C>0\) is universal.

Proof of Theorem 4.2

Using Lemma B.1 and a barrier argument as in [19, p. 595], we can prove that

$$\begin{aligned} |u(x)-\phi (x')|\le C\sigma ^{1/3}t^2,\quad x'\in B'_{1/2}, t\in (0,1) \end{aligned}$$

for some \(C>0\) universal. This combined with Theorem 3.1 implies the \(C^{1,1}\) regularity for small viscosity solutions of (1.1) up to the boundary, i.e., Theorem 4.2.

Proof of Theorem 4.1

By Theorem 4.2, we can assume

$$\begin{aligned} \Vert u\Vert _{C^{1,1}({\bar{\Omega }})}+\left\Vert\frac{u_t}{t}\right\Vert_{L^\infty (\Omega )}+\Vert f\Vert _{C^{0,1}({\bar{\Omega }})} +\Vert \phi \Vert _{C^{2,\alpha }(B'_1)}\le \delta '\le c\delta , \end{aligned}$$
(B.3)

where \(c>0\) is small, universal, to be chosen below. We can now reduce the Eq. (1.1) to

$$\begin{aligned} F_1\left(D^2u,\frac{u_t}{t},\frac{u}{t^2},x\right)=f \end{aligned}$$

where \(F_1: \bar{\mathcal {D}}_1:=\mathcal {S}^n\times {\mathbb {R}}\times {\mathbb {R}}\times {\bar{\Omega }}\rightarrow {\mathbb {R}}\) is defined as

$$\begin{aligned} F_1(M,r,s,x):=F(M,Du(x),u(x),r,s,x). \end{aligned}$$

By (B.3), the operator \(F_1\) satisfies \(\mathrm {(H2)}\) with \(\mathcal {U}_\delta \) replaced by

$$\begin{aligned} \mathcal {U}_{1,\delta /2}:=\{(M,r,s,x)\in \bar{\mathcal {D}}_1: \Vert M\Vert +|r|+|s|\le \delta /2\}. \end{aligned}$$

Since \(F(\mathbf{{0}},x)=0\) and \(F\in C^{1,1}(\mathcal {U}_\delta )\), by (B.3) we have

$$\begin{aligned} |F_1(M,r,s,x)-F_1(M,r,s,{\tilde{x}})|\le 4K\delta '|x-{\tilde{x}}|\quad \quad \text {for any}\; \Vert M\Vert +|r|+|s|\le \delta '.\nonumber \\ \end{aligned}$$
(B.4)

Denote

$$\begin{aligned} {\bar{p}}(x'):={\bar{p}}(x',0)=\left((D\phi (x'),0),\phi (x')\right). \ \end{aligned}$$
(B.5)

The operator \(F_1\) also satisfies the monotonicity assumption for small ar, i.e., the function \(g_1\) defined by

$$\begin{aligned} g_1(a,r,x'):=F_1\left(\left[\begin{array}{cc} a&{}0\\ 0&{}r \end{array}\right],r,\frac{r}{2},x',0\right) \end{aligned}$$

satisfies \(g_1(a,r,x')=g(a,r,{\bar{p}}(x'),x')\), where g is as in \(\mathrm {(H5)}\). Hence,

$$\begin{aligned} \frac{\partial g_1(a,r,x')}{\partial r}\le -b<0\quad \quad \textrm{for}\quad \Vert a\Vert +|r|\le \delta /2, x'\in B'_1, \end{aligned}$$

Let \(\xi \) be the function given by Lemma B.1 and \(\xi (x'), \omega (x')\) be defined in (4.3) and (4.4) respectively. By Lemma B.1 and (B.3), we have

$$\begin{aligned} |\xi (x')|\le C\delta ' \end{aligned}$$
(B.6)

for some \(C>0\) universal, hence \((\omega (x'),x',0)\in \mathcal {U}_\delta \) if \(\delta '\le c\delta \) for some c small, universal, and \(\omega (x')\) solves the equation

$$\begin{aligned} F(\omega (x'),x',0)=f(x',0). \end{aligned}$$
(B.7)

Using (B.7), Lemma B.1 and arguing as in [19, Theorem 3.7, Corollary 3.13], we obtain that

$$\begin{aligned} \left|u(x)-P_{x'_0}(x)\right|\le C\delta '\left(|x'-x'_0|+t\right)^{2+\alpha }\quad \text {for any}\; x'_0\in B'_{1/2}\;\textrm{and}\;x\in \Omega , \end{aligned}$$
(B.8)

where \(\alpha \in (0,1), C>0\) are universal, and we choose \(\delta '\le c\delta \) for some c small, universal, and denote

$$\begin{aligned} P_{x'_0}(x):=\phi (x'_0)+D\phi (x'_0)\cdot (x'-x'_0)+\frac{1}{2}(x'-x'_0)^TD^2\phi (x'_0)(x'-x'_0)+\frac{1}{2}\xi (x'_0)t^2\nonumber \\ \end{aligned}$$
(B.9)

Hence \(u\in C^{2,\alpha }\) at each point on \(B'_{1/2}\times \{0\}\). By (B.6) and the definition (1.2) we have

$$\begin{aligned} |\omega [P_0](x)|\le C\delta '\quad \text {for}x\in \Omega , \end{aligned}$$

where \(P_0\) is defined in (B.9) with \(x'_0=0\). By (B.7) we have \(F\left(\omega [P_0](0),0\right)=f(0)\). It follows that

$$\begin{aligned}{} & {} |(F[P_0]-f)(x)|\\{} & {} \quad \le \left|F\left(\omega [P_0](x),x\right)-F\left(\omega [P_0](x),0\right)\right|+\left| F\left(\omega [P_0](x),0\right)\right. \\{} & {} \qquad \left. -F\left(\omega [P_0](0),0\right)\right| +|f(x)-f(0)|\\{} & {} \quad \le C\delta '|x|, \end{aligned}$$

for some C universal, where we use that \(F(\mathbf{{0}},x)=0\). We have similar estimates for \(P_{\!x'_0}\) with \(x'_0\in B'_{1/2}\).

Choosing \(\delta '\le \delta _0\), where \(\delta _0\) is small (depending only on \(\delta \) and universal constants), and applying Theorem 1 with \(m=1\) (see Remark 3.1), we obtain that \(u\in C^{2,\alpha }({\bar{\Omega }}_{1/2})\), and

$$\begin{aligned}{}[D^2u]_{C^{\alpha }({\bar{\Omega }}_{1/2})}\le \delta ^{'\beta }, \end{aligned}$$

where \(\beta >0\) depends only on \(\alpha \). \(\square \)

Proof of Theorem 4.3

By Theorem 4.2, we can assume

$$\begin{aligned} \Vert u\Vert _{C^{1,1}({\bar{\Omega }})}+\Vert \phi \Vert _{C^{m+1,1}(B'_1)}+\Vert f\Vert _{C^{m}({\bar{\Omega }})}\le \delta '\le c\delta \end{aligned}$$
(B.10)

for some \(c>0\) small, universal, to be chosen below. Taking \(x'=x'_0\) in (B.8) we obtain

$$\begin{aligned} \left|u(x)-\phi (x')-\frac{1}{2}\xi (x')t^2\right|\le C\delta 't^{2+\alpha }\quad \text {for any}x\in B'_{1/2}\times [0,1). \end{aligned}$$
(B.11)

This [or the polynomial \(P_{0}\) in (B.9)] is a second order approximation of u at \(x=0\). Using the induction argument in [9, Sect. 2] we can obtain a higher order approximation of u, i.e., there exists a polynomial \(Q_0(x'\!,t)\) of degree \(m+1\), which is of the form

$$\begin{aligned} Q_0(x'\!,t)=p_0(x')+t^2q_0(x'\!,t), \end{aligned}$$

where \(p_0(x')\) is the Taylor expansion of \(\phi \) at 0 of order \(m+1\), \(q_0(x'\!,t)\) is a polynomial of degree \(m-1\) whose coefficients are bounded by \(C_0\delta '\), satisfying

$$\begin{aligned} \left|D^j\left(F[Q_0]-f\right)(x)\right|\le C_0\delta '|x|^{m-j},\quad j=0,1,\ldots ,m, \end{aligned}$$

and

$$\begin{aligned} |(u-Q_0)(x)|\le C_0\delta '|x|^{2+\alpha },\quad \quad |(u-Q_0)(x',0)|\le C_0\delta '|x'|^{m+2}, \end{aligned}$$

where \(C_0>0\) is universal.

For any \(\epsilon >0\) small, set \(\mu ^-:=\mu -\epsilon \). For \(x\in E:=\{|x'|<\theta ^{\frac{1}{1+\epsilon _0}},0<t<\theta \}\), let

$$\begin{aligned} w(x)=A\delta '\left(|x'|^{2+2\epsilon _0}+t^2\right)^{\frac{\mu ^-}{2}},\quad \quad A:=8C_0\theta ^{2+\alpha /2-\mu ^-}, \end{aligned}$$

where \(\theta >0\) is small, depending only on \(\epsilon \) and universal constants, and we choose \(\epsilon _0\) satisfying

$$\begin{aligned} 0<\epsilon _0<\frac{\epsilon }{\mu -\epsilon },\quad \quad \frac{2+\alpha }{1+\epsilon _0}>2+\alpha /2. \end{aligned}$$
(B.12)

This gives \(w\ge |u-Q_0|\) on \(\partial E\). Arguing as in [9, p. 122 (iv)] we obtain

$$\begin{aligned} |u-Q_0|\le w\le C\delta '|x|^{\mu ^-}\quad \quad \textrm{in}\quad {\bar{\Omega }}_{1/2}, \end{aligned}$$

where \(C>0\) depends only on \(\epsilon \) and universal constants. Replacing 0 with any \(x'_0\in B'_{\rho _0}\), where \(\rho _0>0\) is small depending only on \(\mu ,\epsilon \) and universal constants, and using Theorem 1 (see Remark 3.1), we obtain Theorem 4.3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q. Boundary regularity for viscosity solutions of nonlinear singular elliptic equations. Calc. Var. 62, 87 (2023). https://doi.org/10.1007/s00526-022-02427-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02427-w

Mathematics Subject Classification

Navigation