Skip to main content
Log in

Multiple solutions and profile description for a nonlinear Schrödinger–Bopp–Podolsky–Proca system on a manifold

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove a multiplicity result for

$$\begin{aligned} {\left\{ \begin{array}{ll} -\varepsilon ^{2}\Delta _g u+\omega u+q^{2}\phi u=|u|^{p-2}u\\ -\Delta _g \phi +a^{2}\Delta _g^{2} \phi + m^2 \phi =4\pi u^{2} \end{array}\right. } \text { in }M, \end{aligned}$$

where (Mg) is a smooth and compact 3-dimensional Riemannian manifold without boundary, \(p\in (4,6)\), \(a,m,q\ne 0\), \(\varepsilon >0\) small enough. The proof of this result relies on Lusternik–Schnirellman category. We also provide a profile description for low energy solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. Without the normalization of the constants, our results hold for every \(\omega ,q>0\) and \(2am<1\).

  2. For completeness, in “Appendix A” we give some details.

  3. Without the normalization of the constants assumed at the beginning of Sect. 2, we get \(u_{\varepsilon }(P)\ge \omega ^{\frac{1}{p-2}}\).

References

  1. Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics, vol. 104. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  2. Bahri, A., Coron, J.-M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41, 253–294 (1988)

    Article  MathSciNet  Google Scholar 

  3. Benci, V., Bonanno, C., Micheletti, A.M.: On the multiplicity of solutions of a nonlinear elliptic problem on Riemannian manifolds. J. Funct. Anal. 252, 464–489 (2007)

    Article  MathSciNet  Google Scholar 

  4. Benci, V., Cerami, G.: The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch. Ration. Mech. Anal. 114, 79–93 (1991)

    Article  MathSciNet  Google Scholar 

  5. Benci, V., Cerami, G., Passaseo, D.: On the number of the positive solutions of some nonlinear elliptic problems, 93–107. In: Ambrosetti, A., Marino, A. (eds.) Nonlinear Analysis. A tribute in honour of G. Prodi, Quaderni Sc. Norm. Super. di Pisa, Scuola Norm. Sup., Pisa (1991)

  6. Bopp, F.: Eine Lineare Theorie des Elektrons. Ann. Phys. 430, 345–384 (1940)

    Article  MathSciNet  Google Scholar 

  7. Chen, S., Li, L., Rădulescu, V.D., Tang, X.: Ground state solutions of the non-autonomous Schrödinger–Bopp–Podolsky system. Anal. Math. Phys. 12, 32 (2022)

    Article  Google Scholar 

  8. Chen, S., Tang, X.: On the critical Schrödinger–Bopp–Podolsky system with general nonlinearities. Nonlinear Anal. 195, 111734 (2020)

    Article  MathSciNet  Google Scholar 

  9. d’Avenia, P., Siciliano, G.: Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case. J. Differ. Equ. 267, 1025–1065 (2019)

    Article  Google Scholar 

  10. de Figueiredo, D.G.: Lectures on the Ekeland variational principle with applications and detours. In: Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 81. Springer, Berlin (1989)

  11. Figueiredo, G.M., Siciliano, G.: Existence and asymptotic behaviour of solutions for a quasi-linear Schrödinger–Poisson system under a critical nonlinearity. Z. Angew. Math. Phys. 71, 130 (2020)

    Article  Google Scholar 

  12. Figueiredo, G.M., Siciliano, G.: Multiple solutions for a Schrödinger–Bopp–Podolsky system with positive potentials. arXiv:2006.12637

  13. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}}^{n}\). In: Mathematical Analysis and Applications, Part A, Advances in Mathematics Supplementary Studies, vol. 7a, pp. 369–402. Academic Press, New York (1981)

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    MATH  Google Scholar 

  15. Ghimenti, M., Micheletti, A.M.: Number and profile of low energy solutions for singularly perturbed Klein–Gordon–Maxwell systems on a Riemannian manifold. J. Differ. Equ. 256, 2502–2525 (2014)

    Article  MathSciNet  Google Scholar 

  16. Hebey, E.: Electro-magneto-static study of the nonlinear Schrödinger equation coupled with Bopp–Podolsky electrodynamics in the Proca setting. Discrete Contin. Dyn. Syst. 39, 6683–6712 (2019)

    Article  MathSciNet  Google Scholar 

  17. Hebey, E.: Strong convergence of the Bopp–Podolsky–Schrödinger–Proca system to the Schrödinger–Poisson–Proca system in the electro-magneto-static case. Calc. Var. Partial Differ. Equ. 59, 25 (2020)

    Article  Google Scholar 

  18. Hebey, E.: Schrödinger–Poisson–Proca systems in EMS regime. Commun. Contemp. Math. 24, 2150038 (2022)

    Article  Google Scholar 

  19. Hebey, E.: Blowing-up solutions to Bopp–Podolsky–Schrödinger–Proca and Schrödinger–Poisson–Proca systems in the electro-magneto-static case. Adv. Differ. Equ. 27, 253–332 (2022)

    MATH  Google Scholar 

  20. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \({\mathbb{R} }^n\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  Google Scholar 

  21. Li, L., Pucci, P., Tang, X.: Ground state solutions for the nonlinear Schrödinger–Bopp–Podolsky system with critical Sobolev exponent. Adv. Nonlinear Stud. 20, 511–538 (2020)

    Article  MathSciNet  Google Scholar 

  22. Mascaro, B., Siciliano, G.: Positive Solutions For a Schrödinger–Bopp–Podolsky system in \({\mathbb{R}}^{3}\). arXiv:2009.08531

  23. Peng, X., Jia, G.: Existence and concentration behavior of solutions for the logarithmic Schrödinger–Bopp–Podolsky system. Z. Angew. Math. Phys. 72, 198 (2021)

    Article  Google Scholar 

  24. Podolsky, B.: A generalized electrodynamics. Phys. Rev. 62, 68–71 (1942)

    Article  MathSciNet  Google Scholar 

  25. Schoen, R., Yau, S.-T.: Lectures on Differential Geometry, International Press, 2010 by International Press, Somerville (1994)

  26. Silva, K.: On an abstract bifurcation result concerning homogeneous potential operators with applications to PDEs. J. Differ. Equ. 269, 7643–7675 (2020)

    Article  MathSciNet  Google Scholar 

  27. Zheng, P.: Existence and finite time blow-up for nonlinear Schrödinger equations in the Bopp–Podolsky electrodynamics. J. Math. Anal. Appl. 514, 126346 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro d’Avenia.

Additional information

Communicated by A. Neves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors are members of GNAMPA (INdAM).

Pietro d’Avenia is partially supported by PRIN 2017JPCAPN Qualitative and quantitative aspects of nonlinear PDEs and by GNAMPA project Modelli EDP nello studio problemi della fisica moderna.

Marco G. Ghimenti is partially supported by GNAMPA project Modelli matematici con singolarità per fenomeni di interazione and by PRA 2022 Nonlinear dispersive equations and dynamics of fluids

Appendices

Appendix A. Ekeland principle

In this Appendix we want to show that (4.12) holds.

To this end, we proceed as in [3, Lemma 5.4], applying the Ekeland Principle (see [10, Chapter 4]) as follows:

for every \(\theta ,\iota >0\) and \(u\in J_\varepsilon ^{m_\varepsilon +\theta /2}\), there exists \(u_\iota \in {\mathcal {N}}_\varepsilon \) such that

$$\begin{aligned} J_\varepsilon (u_\iota )<J_\varepsilon (u), \quad \Vert u_\iota -u\Vert _\varepsilon<\iota , \quad J_\varepsilon (u_\iota )<J_\varepsilon (v)+\frac{\theta }{\iota }\Vert u_\iota -u\Vert _\varepsilon <\iota \text { for all }v\in {\mathcal {N}}_\varepsilon . \end{aligned}$$

Thus, for every k, taking \(\theta =4\delta _k\) and \(\iota =4\sqrt{\delta _k}\), there exists \({\tilde{u}}_k\in {\mathcal {N}}_{\varepsilon _{k}}\) such that

$$\begin{aligned} J_{\varepsilon _{k}}({\tilde{u}}_k)< & {} J_{\varepsilon _{k}}(u_k), \quad \Vert {\tilde{u}}_k - u_k\Vert _{\varepsilon _{k}}<4\sqrt{\delta _k}, \nonumber \\ J_{\varepsilon _{k}}({\tilde{u}}_k)< & {} J_{\varepsilon _{k}}(v)+\sqrt{\delta _k}\Vert {\tilde{u}}_k - v\Vert _{\varepsilon _{k}} \text { for all } v\in {\mathcal {N}}_{\varepsilon _{k}}. \end{aligned}$$
(A.1)

The boundedness of \(\{\Vert u_k\Vert _{\varepsilon _{k}}\}\) and (A.1) implies that \(\{\Vert {\tilde{u}}_k\Vert _{\varepsilon _{k}}\}\) is bounded too.

Observe, moreover, that, for every \(\xi \in T_{{\tilde{u}}_k}{\mathcal {N}}_{\varepsilon _{k}}\), there exists a smooth curve \(\gamma :[a,b]\rightarrow {\mathcal {N}}_{\varepsilon _{k}}\), with \(a<0<b\), such that

$$\begin{aligned} \gamma (0)={\tilde{u}}_k \text { and } \gamma '(0)=\xi \end{aligned}$$

(see e.g. [1]).

Let \(\{t_n\}\subset {\mathbb {R}}\) such that \(t_n \rightarrow 0\).

Since

$$\begin{aligned} J_{\varepsilon _{k}}(\gamma (t_n)) = J_{\varepsilon _{k}}(\gamma (0)) + J_{\varepsilon _{k}}'(\gamma (0))[\gamma '(0)]t_n +O(t_n^2) = J_{\varepsilon _{k}}({\tilde{u}}_k) + J_{\varepsilon _{k}}'({\tilde{u}}_k)[\xi ] t_n +O(t_n^2) \end{aligned}$$

and

$$\begin{aligned} \Vert {\tilde{u}}_k - \gamma (t_n)\Vert _{\varepsilon _{k}} = \Vert \gamma (0) - \gamma (t_n)\Vert _{\varepsilon _{k}} = \Vert \gamma '(0)t_n +O(t_n^2)\Vert _{\varepsilon _{k}} = \Vert \xi t_n +O(t_n^2)\Vert _{\varepsilon _{k}}, \end{aligned}$$

by the Ekeland Variational Principle, we get

$$\begin{aligned} \sqrt{\delta _k}> \frac{J_{\varepsilon _{k}}({\tilde{u}}_k)-J_{\varepsilon _{k}}(\gamma (t_n))}{\Vert {\tilde{u}}_k - \gamma (t_n)\Vert _{\varepsilon _{k}}} = \frac{t_n}{|t_n|} \frac{J_{\varepsilon _{k}}'({\tilde{u}}_k)[\xi ]+O(t_n)}{\Vert \xi +O(t_n)\Vert _{\varepsilon _{k}}}. \end{aligned}$$

Considering the left and right limits as \(t_n\rightarrow 0\) we can conclude that

$$\begin{aligned} |J_{\varepsilon _{k}}'({\tilde{u}}_k)[\xi ]|\le \sqrt{\delta _k} \Vert \xi \Vert _{\varepsilon _{k}} \text { for all } \xi \in T_{{\tilde{u}}_k}{\mathcal {N}}_{\varepsilon _{k}}. \end{aligned}$$
(A.2)

Let now \(\varphi \in H^1(M)\) be arbitrary.

Since \({\tilde{u}}_k\in {\mathcal {N}}_{\varepsilon _{k}}\), by (iii) in Lemma 3.1,

$$\begin{aligned} N'_{\varepsilon _{k}}({\tilde{u}}_k)[{\tilde{u}}_k] = -2 \Vert {\tilde{u}}_k\Vert _{\varepsilon _{k}}^2 -(p-4)|{\tilde{u}}_k^+|_{p,\varepsilon _{k}}^p \le -C <0. \end{aligned}$$
(A.3)

Then \({\tilde{u}}_k\notin T_{{\tilde{u}}_k} {\mathcal {N}}_{\varepsilon _{k}}\). Thus there exists \(\lambda ,\mu \in {\mathbb {R}}\) and \(\xi \in T_{{\tilde{u}}_k} {\mathcal {N}}_{\varepsilon _{k}}\) such that \(\varphi =\lambda \xi + \mu {\tilde{u}}_k\).

Observe that, by (A.3), there exists \(C\in (0,1)\) such that for all \(u\in {\mathcal {N}}_{\varepsilon _{k}}, \xi \in T_u {\mathcal {N}}_{\varepsilon _{k}}\), \( |\langle \xi ,u\rangle _{\varepsilon _{k}}|\le C\Vert \xi \Vert _{\varepsilon _{k}} \Vert u\Vert _{\varepsilon _{k}}\). Then a straightforward calculation shows that there exists \(C>0\) such that \(\Vert \lambda \xi \Vert _{\varepsilon _k} \le C\Vert \varphi \Vert _{\varepsilon _k}\).

Then, by (A.2), we get that for every \(\varphi \in H^1(M)\)

$$\begin{aligned} |J_{\varepsilon _{k}}'({\tilde{u}}_k)[\varphi ]| = |\lambda J_{\varepsilon _{k}}'({\tilde{u}}_k)[\xi ]| \le \sqrt{\delta _k} \Vert \lambda \xi \Vert _{\varepsilon _{k}} \le C \sqrt{\delta _k} \Vert \varphi \Vert _{\varepsilon _{k}}. \end{aligned}$$
(A.4)

Hence, we can conclude. Indeed, since

$$\begin{aligned} |J_{\varepsilon _{k}}'(u_k)[\varphi ]| \le |J_{\varepsilon _{k}}'(u_k)[\varphi ]-J_{\varepsilon _{k}}'({\tilde{u}}_k)[\varphi ]| +|J_{\varepsilon _{k}}'({\tilde{u}}_k)[\varphi ]|, \end{aligned}$$

by (A.4), it is enough to prove that

$$\begin{aligned} |J_{\varepsilon _{k}}'(u_k)[\varphi ]-J_{\varepsilon _{k}}'({\tilde{u}}_k)[\varphi ]| \le C\sqrt{\delta _{k}}\Vert \varphi \Vert _{\varepsilon _{k}}. \end{aligned}$$
(A.5)

This follows observing that

$$\begin{aligned} |J_{\varepsilon _{k}}'(u_k)[\varphi ]-J_{\varepsilon _{k}}'({\tilde{u}}_k)[\varphi ]|&= \Big |\frac{1}{\varepsilon _{k}^3}\Big [\varepsilon _{k}^2\int _M \nabla _{g} (u_k-{\tilde{u}}_k)\nabla _{g}\varphi d\mu _{g} +\omega \int _M (u_k-{\tilde{u}}_k)\varphi d\mu _{g}\\&\quad +q^2 \int _M (\phi _{u_k}u_k-\phi _{{\tilde{u}}_k}{\tilde{u}}_k)\varphi d\mu _{g}\\&\quad -\int _M (|u_k^+|^{p-2}u_k^+ - |{\tilde{u}}_k^+|^{p-2}{\tilde{u}}_k^+)\varphi d\mu _g\Big ] \Big |. \end{aligned}$$

Then, by Hölder inequality and (A.1),

$$\begin{aligned} \Big |\frac{1}{\varepsilon _{k}^3}\Big [\varepsilon _{k}^2\int _M \nabla _{g} (u_k-{\tilde{u}}_k)\nabla _{g}\varphi d\mu _{g} +\omega \int _M (u_k-{\tilde{u}}_k)\varphi d\mu _{g} \Big |\le & {} \Vert u_k-{\tilde{u}}_k\Vert _{\varepsilon _{k}} \Vert \varphi \Vert _{\varepsilon _{k}}\\< & {} 4 \sqrt{\delta _{k}} \Vert \varphi \Vert _{\varepsilon _{k}}. \end{aligned}$$

Moreover

$$\begin{aligned} \frac{1}{\varepsilon _{k}^3}\Big |\int _M (\phi _{u_k}u_k-\phi _{{\tilde{u}}_k}{\tilde{u}}_k)\varphi d\mu _{g}\Big |\le & {} \frac{1}{\varepsilon _{k}^3}\Big |\int _M \phi _{u_k} (u_k-{\tilde{u}}_k)\varphi d\mu _{g}\Big |\nonumber \\&+\frac{1}{\varepsilon _{k}^3}\Big |\int _M (\phi _{u_k}-\phi _{{\tilde{u}}_k}){\tilde{u}}_k \varphi d\mu _{g}\Big |. \end{aligned}$$
(A.6)

Considering the first term in the right hand side of (A.6), by Lemma 2.1, Sobolev embedding \(H^2(M)\subset C^0(M)\), Hölder inequality, (2.1), the boundedness of \(\{\Vert u_k\Vert _{\varepsilon _{k}}\}\), and (A.1),

$$\begin{aligned} \frac{1}{\varepsilon _{k}^3}\Big |\int _M \phi _{u_k}(u_k-{\tilde{u}}_k)\varphi d\mu _{g}\Big |\le & {} |\phi _{u_k}|_{C^0} |u_k-{\tilde{u}}_k|_{2,\varepsilon _{k}} |\varphi |_{2,\varepsilon _{k}} \\\le & {} C | u_k |_2^2 \Vert u_k-{\tilde{u}}_k\Vert _{\varepsilon _{k}} \Vert \varphi \Vert _{\varepsilon _{k}} \le C \varepsilon _{k}^3 \sqrt{\delta _{k}} \Vert \varphi \Vert _{\varepsilon _{k}}. \end{aligned}$$

To estimate the second term in the right hand side of (A.6), first observe that

$$\begin{aligned} -\Delta _g (\phi _{u_k}-\phi _{{\tilde{u}}_k}) + a^2 \Delta _g^2 (\phi _{u_k}-\phi _{{\tilde{u}}_k}) + (\phi _{u_k}-\phi _{{\tilde{u}}_k}) {=} 4\pi (u_k^2{-}{\tilde{u}}_k^2). \end{aligned}$$

Then, using also Sobolev and Hölder inequalities, (2.1), (A.1), and the boundedness of \(\{\Vert u_k\Vert _{\varepsilon _{k}}\}\) and \(\{\Vert {\tilde{u}}_k\Vert _{\varepsilon _{k}}\}\),

$$\begin{aligned} \Vert \phi _{u_k}-\phi _{{\tilde{u}}_k}\Vert _{H^2}^2&= 4\pi \int _M (\phi _{u_k}-\phi _{{\tilde{u}}_k}) (u_k^2-{\tilde{u}}_k^2) d\mu _{g} \le C \Vert \phi _{u_k}-\phi _{{\tilde{u}}_k}\Vert _{H^2} \int _M |u_k^2-{\tilde{u}}_k^2|d\mu _g\\&\le C \Vert \phi _{u_k}-\phi _{{\tilde{u}}_k}\Vert _{H^2} |u_k-{\tilde{u}}_k|_2 |u_k+{\tilde{u}}_k|_2 \le C \varepsilon _{k}^3 \Vert \phi _{u_k}-\phi _{{\tilde{u}}_k}\Vert _{H^2} \Vert u_k-{\tilde{u}}_k\Vert _{\varepsilon _{k}}. \end{aligned}$$

Thus, using also Sobolev imbeddings, Hölder inequality, and (A.1),

$$\begin{aligned} \frac{1}{\varepsilon _{k}^3}\Big |\int _M (\phi _{u_k}-\phi _{{\tilde{u}}_k}) {\tilde{u}}_k \varphi d\mu _{g}\Big |&\le \frac{1}{\varepsilon _{k}^3} |\phi _{u_k}-\phi _{{\tilde{u}}_k}|_{C^0} |{\tilde{u}}_k|_2 |\varphi |_2 \le \frac{C}{\varepsilon _{k}^3} \Vert \phi _{u_k}-\phi _{{\tilde{u}}_k}\Vert _{H^2} |{\tilde{u}}_k|_2 |\varphi |_2\\&\le C \varepsilon _{k}^3 \Vert u_k-{\tilde{u}}_k\Vert _{\varepsilon _{k}} |{\tilde{u}}_k|_{2,\varepsilon _{k}} |\varphi |_{2,\varepsilon _{k}} \le C \varepsilon _{k}^3 \sqrt{\delta _{k}} \Vert \varphi \Vert _{\varepsilon _{k}}. \end{aligned}$$

Finally, by Lagrange Theorem, Hölder inequality, (2.1), boundedness of \(\{\Vert u_k\Vert _{\varepsilon _{k}}\}\) and \(\{\Vert {\tilde{u}}_k\Vert _{\varepsilon _{k}}\}\), (A.1), we have

$$\begin{aligned}&\Big |\frac{1}{\varepsilon _{k}^3}\int _M (|u_k^+|^{p-2}u_k^+ - |{\tilde{u}}_k^+|^{p-2}{\tilde{u}}_k^+)\varphi d\mu _g \Big | \\&\quad \le \frac{p-1}{\varepsilon _{k}^3} \int _M |\theta _k u_k^+ +(1-\theta _k ) {\tilde{u}}_k^+|^{p-2} |u_k^+ - {\tilde{u}}_k^+| |\varphi | d\mu _g\\&\quad \le C (|u_k^+|_{p,\varepsilon _{k}}^{p-2} + |{\tilde{u}}_k^+|_{p,\varepsilon _{k}}^{p-2}) |u_k^+ - {\tilde{u}}_k^+|_{p,\varepsilon _{k}} |\varphi |_{p,\varepsilon _{k}}\\&\le C \sqrt{\delta _{k}} \Vert \varphi \Vert _{\varepsilon _{k}}, \end{aligned}$$

completing the proof of (A.5).

Appendix B. Bootstrap argument

In this section, through a classical bootstrap argument, we prove that \(\{{\bar{v}}_{j}^{1}\} \subset C^{2}(B(0,R/2))\) and that it is bounded in \(C^{2}(B(0,R/2))\).

Let \(R>0\).

Observe that, arguing as in (5.1), for j large,

$$\begin{aligned} B(0,R) \subset B\Bigg (0,\frac{r}{4\varepsilon _{j}}\Bigg ) \subset B\Bigg (-\frac{Q_{\varepsilon _{j}}^1}{\varepsilon _{j}},\frac{r}{2\varepsilon _{j}}\Bigg ). \end{aligned}$$
(B.1)

Thus, in B(0, R), since \(u_{\varepsilon _{j}}\) is a solution of (2.3), we have

$$\begin{aligned} \begin{aligned}&-\varepsilon _{j}^2 (\Delta _g u_{\varepsilon _{j}}) \big (\exp _{P^{1}}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}z)\big ) \\&\quad = - u_{\varepsilon _{j}} \big (\exp _{P^{1}}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}z)\big ) + (u_{\varepsilon _{j}})^{p-1}\big (\exp _{P^{1}}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}z)\big ) \\&\qquad - \phi _{u_{\varepsilon _j}} \big (\exp _{P^{1}}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}z)\big ) u_{\varepsilon _{j}} \big (\exp _{P^{1}}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}z)\big ). \end{aligned} \end{aligned}$$
(B.2)

But, since

$$\begin{aligned} (\Delta _g u_{\varepsilon _{j}}) \big (\exp _{P^{1}}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}z)\big )= & {} \frac{1}{\varepsilon _{j}^2} g_{P^{1}}^{il}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}z) \partial _{il} {\bar{v}}_j^1 (z) \\&+ \frac{1}{\varepsilon _{j}^2 |g_{P^1}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}z)|^{1/2}} \partial _{l}\\&\left( g_{P^{1}}^{il}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}\cdot )|g_{P^{1}}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}\cdot )|^{1/2}\right) (z) \partial _{i} {\bar{v}}_j^1(z), \end{aligned}$$

(B.2) reads as

$$\begin{aligned} -g_{P^{1}}^{il}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}z) \partial _{il} {\bar{v}}_j^1 (z) = f_j(z), \end{aligned}$$
(B.3)

where

$$\begin{aligned} f_j(z)&:= \frac{1}{|g_{P^1}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}z)|^{1/2}} \partial _{l}\left( g_{P^{1}}^{il}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}\cdot )|g_{P^{1}}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}\cdot )|^{1/2}\right) (z) \partial _{i} {\bar{v}}_j^1(z) - {\bar{v}}_j^1(z) \\&\quad - {\bar{\phi }}_j(z) {\bar{v}}_j^1(z) + ({\bar{v}}_j^1)^{p-1}(z) \end{aligned}$$

and \({\bar{\phi }}_j(z):=\phi _{u_{\varepsilon _j}} \big (\exp _{P^{1}}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}z)\big )\).

Let us show that \({\bar{v}}_j^1 \in C^{0,\alpha }(B(0,R))\) for some \(\alpha \in (0,1)\).

Let us consider equation (B.3) in B(0, R) and let \(q_0:=6\). Since \(p \in (4, 6)\), then \(q_0/(p-1)\in (6/5,2)\). Thus

$$\begin{aligned} \min \left\{ 2, \frac{q_0}{p-1} \right\} = \frac{q_0}{p-1} \end{aligned}$$

and so, using the boundedness of \(\{{\bar{v}}_j^1\}\) in \(H^1({\mathbb {R}}^3)\) and of \(\{\Vert u_{\varepsilon _{j}}\Vert _{\varepsilon _{j}}\}\), (B.1), and Lemma 2.1, \(f_j \in L^{q_0/(p-1)} (B(0,R))\) and

$$\begin{aligned} \left( \int _{B (0, R)} |{\bar{\phi }}_j {\bar{v}}_j^1|^{q_0/(p-1)} dz\right) ^{(p-1)/q_0}&\le C\left( \int _{B (0, R)} |{\bar{\phi }}_j {\bar{v}}_j^1|^2 dz\right) ^{1/2} \le C |{\bar{\phi }}_j |_{L^\infty (B (0, R))}\\&\le C |\phi _{u_{\varepsilon _{j}}} (\exp _{P^1}(Q_{\varepsilon _{j}}^1+\varepsilon _{j}\cdot )) |_{L^\infty (B (-Q_{\varepsilon _{j}}^1/\varepsilon _{j}, r/(2\varepsilon _{j})))}\\&\le C |\phi _{u_{\varepsilon _{j}}} (\exp _{P^1}(\cdot )) |_{L^\infty (B (0, r/2))} \\&\le C |\phi _{u_{\varepsilon _{j}}} |_{\infty } \le C \Vert \phi _{u_{\varepsilon _{j}}} \Vert _{H^2} \\&\le C |u_{\varepsilon _{j}} |_{2}^2 \le C \varepsilon _{j}^3. \end{aligned}$$

Hence, by (B.3),

$$\begin{aligned} | \Delta {\bar{v}}_j^1 |_{L^{q_0/(p-1)} (B(0,R))} \le C | f_j |_{L^{q_0/(p-1)} (B(0,R))} \le C, \end{aligned}$$

and so, by a classical interpolation inequality, \({\bar{v}}_j^1 \in W^{2, q_0/(p-1)} (B(0,R))\) and

$$\begin{aligned} \Vert {\bar{v}}_j^1\Vert _{W^{2, 6/(p-1)} (B(0,R))} \le C. \end{aligned}$$

If \(q_0/(p-1)>3/2 \), namely if

$$\begin{aligned} (p - 1) - 4 < 0, \end{aligned}$$

we get that \({\bar{v}}_j^1\) is continuous and, by the previous arguments, \(\{{\bar{v}}_j^1\}\) is bounded in \(C^{0,\alpha }(B(0,R))\) for some \(\alpha \in (0,1)\).

If, instead, \(q_0/(p-1) \le 3/2\), namely if

$$\begin{aligned} (p - 1) - 4 \ge 0, \end{aligned}$$

or, equivalently, \( 5 \le p < 6\), then \(W^{2, q_0/(p-1)} (B(0,R))\) embeds in \(L^{q_1} (B(0,R))\) with

$$\begin{aligned} q_1: = \frac{6}{(p - 1) - 4}. \end{aligned}$$

Then we consider

$$\begin{aligned} \min \left\{ 2, \frac{q_1}{p - 1} \right\} \end{aligned}$$

and we iterate the procedure.

So, at the nth step we take

$$\begin{aligned} q_n: = \frac{6}{(p - 1)^n - 4 \sum _{k = 0}^{n - 1} (p - 1)^k} = \frac{6}{(p - 1)^n - 4 \frac{(p - 1)^n - 1}{p - 2}} = \frac{6 (p - 2)}{(p - 6) (p - 1)^n + 4}, \end{aligned}$$

and we consider

$$\begin{aligned} \min \left\{ 2, \frac{q_n}{p - 1} \right\} . \end{aligned}$$

We can conclude if

$$\begin{aligned} \min \left\{ 2, \frac{q_n}{p - 1} \right\} >\frac{3}{2} \end{aligned}$$

which occurs in a finite number of steps since

$$\begin{aligned} \frac{q_n}{p - 1} > \frac{3}{2}, \end{aligned}$$

namely for

$$\begin{aligned} n > \frac{\log 4 - \log (6 - p)}{\log (p - 1)} - 1. \end{aligned}$$

Observe that, at each step, whenever

$$\begin{aligned} \min \left\{ 2, \frac{q_n}{p - 1} \right\} =\frac{q_n}{p - 1}>\frac{3}{2}, \end{aligned}$$

arguing as before we get that \(\{{\bar{v}}_j^1\}\) is bounded in \(C^{0,\alpha }(B(0,R))\) for some \(\alpha \in (0,1)\).

Now, let us write (B.3) as

$$\begin{aligned} \begin{aligned}&-g_{P^{1}}^{il}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}z) \partial _{il} {\bar{v}}_j^1 - \frac{1}{|g_{P^1}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}z)|^{1/2}} \partial _{l}\\&\qquad \left( g_{P^{1}}^{il}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}\cdot )|g_{P^{1}}(Q_{\varepsilon _{j}}^{1}+\varepsilon _{j}\cdot )|^{1/2}\right) (z) \partial _{i} {\bar{v}}_j^1\\&\quad +\omega {\bar{v}}_j^1 + q^2 {\bar{\phi }}_j(z) {\bar{v}}_j^1 = ({\bar{v}}_j^1)^{p-1}. \end{aligned} \end{aligned}$$
(B.4)

The continuity of \({\bar{v}}_j^1\) implies that the right hand side of (B.4) is in \(L^2(B(0,R))\). In addition, also \(|\nabla ({\bar{v}}_j^1)^{p-1}| \in L^2(B(0,R))\) and so the right hand side of (B.4) is in \(H^1(B(0,R))\). Thus, [14, Theorem 8.10] implies that \({\bar{v}}_j^1\in W_\mathrm{loc}^{3,2}(B(0,2R/3))\) and so, by classical embeddings, \({\bar{v}}_j^1\in C^{1,\alpha }(B(0,2R/3))\) for some \(\alpha \in (0,1)\). Then, repeating the procedure we get that \({\bar{v}}_j^1\in C^{2,\alpha }(B(0,R/2))\) for some \(\alpha \in (0,1)\) and, by Schauder estimate [14, page 93],

$$\begin{aligned} \Vert {\bar{v}}_{j}^{1}\Vert _{C^{2,\alpha }(B(0,R/4))}\le C. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

d’Avenia, P., Ghimenti, M.G. Multiple solutions and profile description for a nonlinear Schrödinger–Bopp–Podolsky–Proca system on a manifold. Calc. Var. 61, 223 (2022). https://doi.org/10.1007/s00526-022-02341-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02341-1

Mathematics Subject Classification

Navigation