Skip to main content
Log in

The effects of diffusion on the dynamics of a Lotka-Volterra predator-prey model with a protection zone

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with the dynamics of a diffusive predator-prey model with a protection zone under homogeneous Neumann boundary conditions. By assuming that the diffusion rates of two species are one, Du and Shi (JDE 229:63–91, 2006) studied the impact of protection zone on the dynamics and derived significant difference of the model’s behavior from the original no-protection zone model. The main purpose of this paper is to remove this assumption and investigate the impact of different diffusion rates and protection zone on the dynamics of the model. The sufficient conditions for the existence and non-existence of positive steady states in term of the diffusion rates are established. More importantly, the limiting profiles of positive steady states (when they exist) are also derived as the diffusion rates tend to 0 or \(\infty \). Our research here provides important information about how the diffusion rates affect the dynamics of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin. Dyn. Syst. 21, 1–20 (2008)

    Article  MathSciNet  Google Scholar 

  2. Averill, I., Lam, K.Y., Lou, Y.: The role of advection in a two-species competition model: a bifurcation approach. Mem. Amer. Math. Soc. 245, 1161 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations. Series in Mathematical and Computational Biology, Wiley, Chichester, UK (2003)

    MATH  Google Scholar 

  4. Cantrell, R.S., Cosner, C., Lou, Y.: Evolutionary stability of ideal free dispersal strategies in patchy environments. J. Math. Biol. 65, 943–965 (2012)

    Article  MathSciNet  Google Scholar 

  5. Cui, R.H., Shi, J.P., Wu, B.Y.: Strong Allee effect in a diffusive predator-prey system with a protection zone. J. Differential Equations 256, 108–129 (2014)

    Article  MathSciNet  Google Scholar 

  6. Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  Google Scholar 

  7. Dancer, E.N.: On the indices of fixed points of mappings in cones and applications. J. Math. Anal. Appl. 91, 131–151 (1983)

    Article  MathSciNet  Google Scholar 

  8. Dancer, E.N.: On positive solutions of some pairs of differential equations. Trans. Am. Math. Soc. 284, 729–743 (1984)

    Article  MathSciNet  Google Scholar 

  9. Du, K., Peng, R., Sun, N.K.: The role of protection zone on species spreading governed by a reaction-diffusion model with strong Allee effect. J. Differential Equations 266, 7327–7356 (2019)

    Article  MathSciNet  Google Scholar 

  10. Du, Y.H., Shi, J.P.: A diffusive predator-prey model with a protection zone. J. Differential Equations 229, 63–91 (2006)

    Article  MathSciNet  Google Scholar 

  11. Du, Y.H., Liang, X.: A diffusive competition model with a protection zone. J. Differential Equations 244, 61–86 (2008)

    Article  MathSciNet  Google Scholar 

  12. Du, Y.H., Peng, R., Wang, M.X.: Effect of a protection zone in the diffusive Leslie predator-prey model. J. Differential Equations 246, 3932–3956 (2009)

    Article  MathSciNet  Google Scholar 

  13. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer-Verlag, Berlin (1983)

    MATH  Google Scholar 

  14. He, X., Zheng, S.N.: Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response. J. Math. Biol. 75, 239–257 (2017)

    Article  MathSciNet  Google Scholar 

  15. He, X.Q., Ni, W.M.: Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity I. Comm. Pure. Appl. Math. 69, 981–1014 (2016)

    Article  MathSciNet  Google Scholar 

  16. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math, vol. 840. SpringerVerlag, Berlin, New York (1984)

  17. Hutson, V., Lou, Y., Mischaikow, K.: Convergence in competition models with small diffusion coefficients. J. Differential Equations 211(1), 135–161 (2005)

    Article  MathSciNet  Google Scholar 

  18. Lam, K.Y., Ni, W.M.: Uniqueness and complete dynamics of the Lotka-Volterra competition diffusion system. SIAM J. Appl. Math. 72, 1695–1712 (2012)

    Article  MathSciNet  Google Scholar 

  19. Li, H.C., Peng, R., Wang, Z.A.: On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: analysis, simulations, and comparison with other mechanisms. SIAM J. Appl. Math. 78, 2129–2153 (2018)

    Article  MathSciNet  Google Scholar 

  20. Li, L.: Coexistence theorems of steady-states for predator-prey interacting systems. Trans. Amer. Math. Soc. 305, 143–166 (1988)

    Article  MathSciNet  Google Scholar 

  21. Li, S. B., Dong, Y. Y.: Uniqueness and multiplicity of positive solutions for a diffusive predator-prey model in the heterogeneous environment. Proc. Roy. Soc. Edinburgh A 150, 3321–3348 (2020)

    Article  MathSciNet  Google Scholar 

  22. Li, S.B., Wu, J.H.: Effect of cross-diffusion in the diffusion prey-predator model with a protection zone. Dis. Contin. Dyn. Syst. 37, 1539–1558 (2017)

    Article  MathSciNet  Google Scholar 

  23. Li, S. B., Wu, J. H., Dong, Y. Y.: Uniqueness and stability of positive solutions for a diffusive predator-prey model in heterogeneous environment. Calc. Var. Partial Differential Equations 58, 110 (2019)

    Article  MathSciNet  Google Scholar 

  24. Li, S.B., Wu, J.H., Liu, S.Y.: Effect of cross-diffusion on the stationary problem of a Leslie prey-predator model with a protection zone. Calc. Var. Partial Differential Equations 56, 82 (2017)

    Article  MathSciNet  Google Scholar 

  25. Li, S.B., Yamada, Y.: Effect of cross-diffusion in the diffusion prey-predator model with a protection zone II. J. Math. Anal. Appl. 461, 971–992 (2018)

    Article  MathSciNet  Google Scholar 

  26. López-Gómez, J.: Spectral Theory and Nonlinear Functional Analysis. Research Notes in Mathematics, vol. 426, CRC Press, Boca Raton, FL, (2001)

  27. Lou, Y.: On the effects of migration and spatial heterogeneity on single and multiple species. J. Differential Equations 223, 400–426 (2006)

    Article  MathSciNet  Google Scholar 

  28. Lutscher, F., Pachepsky, E., Lewis, M.A.: The effect of dispersal patterns on stream populations. SIAM Rev. 47, 749–772 (2005)

    Article  MathSciNet  Google Scholar 

  29. Nakashima, K., Yamada, Y.: Positive steady states for prey-predator models with cross-diffusion. Adv. Differential Equations 1, 1099–1122 (1996)

    MathSciNet  MATH  Google Scholar 

  30. Oeda, K.: Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone. J. Differential Equations 250, 3988–4009 (2011)

    Article  MathSciNet  Google Scholar 

  31. Shi, J.P.: Persistence and bifurcation of degenerate solutions. J. Funct. Anal. 169, 494–531 (1999)

    Article  MathSciNet  Google Scholar 

  32. Smith, H.: Monotone Dynamical Systems, An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr. 41, American Mathematical Society, Providence, RI, (1995)

  33. Sun, N.K., Han, X.M.: Asymptotic behavior of solutions of a reaction-diffusion model with a protection zone and a free boundary. Appl. Math. Lett. 107, 106470 (2020)

    Article  MathSciNet  Google Scholar 

  34. Wang, Y.X., Li, W.T.: Effects of cross-diffusion on the stationary problem of a diffusive competition model with a protection zone. Nonlinear Anal. Real World Appl. 14, 224–245 (2013)

    Article  MathSciNet  Google Scholar 

  35. Yamada, Y.: Stability of steady-states for prey-predator diffusion equations with homogeneous Dirichlet conditions. SIAM J. Math. Anal. 21, 327–345 (1990)

    Article  MathSciNet  Google Scholar 

  36. Zeng, X.Z., Zeng, W.T., Liu, L.Y.: Effect of the protection zone on coexistence of the species for a ratio-dependent predator-prey model. J. Math. Anal. Appl. 462, 1605–1626 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We sincerely thank an anonymous reviewer for his (her) helpful comments and suggestions. The work was partially supported by NSF of China (11901446,11971369,12171381,12171296), the Postdoctoral Science Foundation of China (2021T140530), and the Young Talent fund of University Association for Science and Technology in Xi’an (095920201325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanbing Li.

Additional information

Communicated by A. Neves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wu, J. The effects of diffusion on the dynamics of a Lotka-Volterra predator-prey model with a protection zone. Calc. Var. 61, 213 (2022). https://doi.org/10.1007/s00526-022-02338-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02338-w

Mathematics Subject Classification

Navigation