Skip to main content
Log in

Monotonicity-based inversion of fractional semilinear elliptic equations with power type nonlinearities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate the monotonicity method for fractional semilinear elliptic equations with power type nonlinearities. We prove that if-and-only-if monotonicity relations between coefficients and derivatives of the Dirichlet-to-Neumann map hold. Based on the strong monotonicity relations, we study a constructive global uniqueness for coefficients and inclusion detection for the fractional Calderón type inverse problem. Meanwhile, we can also derive the Lipschitz stability with finitely many measurements. The results hold for any \(n\ge 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. This inequality fails for the \(H^s\)-Sobolev spaces, for \(0<s<1\).

  2. For the local case (i.e., \(s=1\)), any solution of Schrödinger equation in a smaller domain can be approximated by solutions of the same equation in a larger domain.

  3. In fact, the reconstruction formula in [49, Corollary 3.1] also holds for general \(m\ge 2\) with \(m\in \mathbb {N}\) in any bounded Euclidean domain \(\Omega \subset \mathbb {R}^n\).

References

  1. Arnold, L., Harrach, B.: Unique shape detection in transient eddy current problems. Inverse Probl. 29(9), 095004 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blumenthal, R.M., Getoor, R.K., Ray, D.B.: On the distribution of first hits for the symmetric stable processes. Trans. of the Am. Math. Soc. 99(3), 540–554 (1961)

    MathSciNet  MATH  Google Scholar 

  3. Barth, A., Harrach, B., Hyvönen, N., Mustonen, L.: Detecting stochastic inclusions in electrical impedance tomography. Inverse Probl. 33(11), 115012 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brander, T., Harrach, B., Kar, M., Salo, M.: Monotonicity and enclosure methods for the \(p\)-Laplace equation. SIAM J. Appl. Math. 78(2), 742–758 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bucur, C., Valdinoci, E.: Nonlocal diffusion and applications, vol. 20. Springer cham, Switzerland (2016)

    Book  MATH  Google Scholar 

  6. Calderón, A.P.: On an inverse boundary value problem. Seminar in Numerical Analysis and its Applications to Continuum Physics (Río de Janeiro: Soc. Brasileira de Matemática), pp. 65–73 (1980)

  7. Cao, X., Lin, Y.-H., Liu, H.: Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators. Inverse Probl. and Imaging 13(1), 197–210 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cekic, M., Lin, Y.-H., Rüland, A.: The Calderón problem for the fractional Schrödinger equation with drift. Cal. Var. Partial Differential Equations 59(91), 1–46 (2020)

    MATH  Google Scholar 

  9. Covi, G., Mönkkönen, K., Railo, J.: Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. (2020). arXiv preprint arXiv:2001.06210

  10. Daimon, T., Furuya, T., Saiin, R.: The monotonicity method for the inverse crack scattering problem. Inverse Problems in Science and Engineering, 1–12 (2020)

  11. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bulletin des Sci. Mathématiques 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferreira, D.D.S., Kenig, C., Sjöstrand, J., Uhlmann, G.: On the linearized local Calderón problem. Math. Res. Lett. 16, 955–970 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feizmohammadi, A., Oksanen, L.: An inverse problem for a semi-linear elliptic equation in Riemannian geometries. (2019). arXiv:1904.00608

  14. Garde, H.: Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations. Inverse Problems in Science and Engineering, 1–18 (2017)

  15. Garde, H.: Reconstruction of piecewise constant layered conductivities in electrical impedance tomography. (2019). arXiv preprint arXiv:1904.07775

  16. García-Cuerva, J., Gatto, A.E.: Boundedness properties of fractional integral operators associated to non-doubling measures. Studia Math. 162, 245–261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gebauer, Bastian: Localized potentials in electrical impedance tomography. Inverse Probl. Imaging 2(2), 251–269 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Griesmaier, Roland, Harrach, Bastian: Monotonicity in inverse medium scattering on unbounded domains. SIAM J. Appl. Math 78(5), 2533–2557 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ghosh, Tuhin, Lin, Yi-Hsuan., Xiao, Jingni: The Calderón problem for variable coefficients nonlocal elliptic operators. Commun. in Partial Differential Equations 42(12), 1923–1961 (2017)

    Article  MATH  Google Scholar 

  20. Ghosh, T., Rüland, A., Salo, M., Uhlmann, G.: Uniqueness and reconstruction for the fractional Calderón problem with a single measurement. J. of Functional Anal. 279, 108505 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Garde, Henrik, Staboulis, Stratos: Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography. Numerische Mathematik 135(4), 1221–1251 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garde, Henrik, Staboulis, Stratos: The regularized monotonicity method: Detecting irregular indefinite inclusions. Inverse Probl. Imaging 13(1), 93–116 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ghosh, Tuhin, Salo, Mikko, Uhlmann, Gunther: The Calderón problem for the fractional Schrödinger equation. Analysis & PDE 13(2), 455–475 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Harrach, B.: On uniqueness in diffuse optical tomography. Inverse Probl. 25, 055010 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Harrach, Bastian: Simultaneous determination of the diffusion and absorption coefficient from boundary data. Inverse Probl. Imaging 6(4), 663–679 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Harrach, Bastian: Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes. Inverse Probl. 35(2), 024005 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Harrach, B., Lin, Y.-H.: Monotonicity-based inversion of the fractional Schrödinger equation I. Positive potentials. SIAM J. on Math. Anal. 51(4), 3092–3111 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Harrach, B., Lin, Y.-H.: Monotonicity-based inversion of the fractional Schödinger equation II. General potentials and stability. SIAM J. on Math. Anal. 52(1), 402–436 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Harrach, Bastian, Lin, Yi-Hsuan., Liu, Hongyu: On localizing and concentrating electromagnetic fields. SIAM J. Appl. Math. 78(5), 2558–2574 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Harrach, Bastian, Lee, Eunjung, Ullrich, Marcel: Combining frequency-difference and ultrasound modulated electrical impedance tomography. Inverse Probl. 31(9), 095003 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Harrach, B., Minh, M.N.: Enhancing residual-based techniques with shape reconstruction features in electrical impedance tomography. Inverse Probl. 32(12), 125002 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Harrach, B., Minh, M.N: Monotonicity-based regularization for phantom experiment data in electrical impedance tomography. In: New Trends in Parameter Identification for Mathematical Models, pp. 107–120. Springer (2018)

  33. Harrach, Bastian, Meftahi, Houcine: Global uniqueness and Lipschitz-stability for the inverse Robin transmission problem. SIAM J. Appl. Math. 79(2), 525–550 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hormander, L.: The Analysis of Linear Partial Differential Operators. I-IV. 1983-1985

  35. Harrach, Bastian, Pohjola, Valter, Salo, Mikko: Dimension bounds in monotonicity methods for the Helmholtz equation. SIAM J. on Math. Anal. 51(4), 2995–3019 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Harrach, Bastian, Pohjola, Valter, Salo, Mikko: Monotonicity and local uniqueness for the Helmholtz equation. Analysis & PDE 12(7), 1741–1771 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Harrach, B., Seo, J.K.: Exact shape-reconstruction by one-step linearization in electrical impedance tomography. SIAM J. on Math. Anal. 42(4), 1505–1518 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Harrach, Bastian, Ullrich, Marcel: Monotonicity-based shape reconstruction in electrical impedance tomography. SIAM J. Math. Anal. 45(6), 3382–3403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Harrach, Bastian, Ullrich, Marcel: Resolution guarantees in electrical impedance tomography. IEEE Trans. Med. Imaging 34, 1513–1521 (2015)

    Article  Google Scholar 

  40. Harrach, Bastian, Ullrich, Marcel: Local uniqueness for an inverse boundary value problem with partial data. Proc. of the Am. Math. Soc. 145(3), 1087–1095 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kow, P-Z., Lin, Y.-H., Wang, J.-N.: The Calderón problem for the fractional wave equation: Uniqueness and optimal stability. (2021). arXiv preprint arXiv:2105.11324

  42. Krupchyk, K., Uhlmann, G.: Partial data inverse problems for semilinear elliptic equations with gradient nonlinearities. (2019). arXiv:1909.08122v1

  43. Krupchyk, Katya, Uhlmann, Gunther: A remark on partial data inverse problems for semilinear elliptic equations. Proc. Am. Math. Soc. 148, 681–685 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kirkpatrick, Kay, Zhang, Yanzhi: Fractional Schrödinger dynamics and decoherence. Physica D: Nonlinear Phenomena 332(14), 41–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lai, Ru.-Yu., Lin, Yi-Hsuan.: Global uniqueness for the fractional semilinear Schrödinger equation. Proc. Am. Math. Soc. 147(3), 1189–1199 (2019)

    Article  MATH  Google Scholar 

  46. Lai, R.-Y., Lin, Y.-H.: Inverse problems for fractional semilinear elliptic equations. (2020). arXiv preprint arXiv:2004.00549

  47. Lin, Y.-H., Liu, H., Liu, X.: Determining a nonlinear hyperbolic system with unknown sources and nonlinearity. (2021). arXiv preprint arXiv:2107.10219

  48. Lassas, Matti, Liimatainen, Tony, Lin, Yi-Hsuan., Salo, Mikko: Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations. Revista Matemática Iberoamericana 37(4), 1553–1580 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lassas, Matti, Liimatainen, Tony, Lin, Yi-Hsuan., Salo, Mikko: Inverse problems for elliptic equations with power type nonlinearities. J. de mathématiques pures et appliquées 145, 44–82 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lai, R.-Y., Lin, Y.-H., Rüland, A: The Calderón problem for a space-time fractional parabolic equation. SIAM Journal on Mathematical Analysis, accepted for publication (2020)

  51. Liimatainen, T., Lin, Y.-H., Salo, M., Tyni, T.: Inverse problems for elliptic equations with fractional power type nonlinearities. (2020). arXiv preprint arXiv:2012.04944

  52. McLean, W.C.H.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, England (2000)

    MATH  Google Scholar 

  53. Maffucci, Antonio, Vento, Antonio, Ventre, Salvatore, Tamburrino, Antonello: A novel technique for evaluating the effective permittivity of inhomogeneous interconnects based on the monotonicity property. IEEE Trans. on Components, Packaging and Manufacturing Technol. 6(9), 1417–1427 (2016)

    Article  Google Scholar 

  54. Ros-Oton, Xavier: Nonlocal elliptic equations in bounded domains: a survey. Publicacions Matemètiques. 60(1), 3–26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ros-Oton, Xavier, Serra, Joaquim: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. de Mathématiques Pures et Appliquées 101(3), 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ros-Oton, Xavier, Serra, Joaquim: The extremal solution for the fractional Laplacian. Calculus of variations and partial differential equations 50(3–4), 723–750 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Rüland, A., Sincich, E.: Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data. Inverse Problems and Imaging, 13(5), (2019)

  58. Rüland, Angkana, Salo, Mikko: The fractional Calderón problem: low regularity and stability. Nonlinear Anal. 193, 111529 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  59. Sincich, Eva: Lipschitz stability for the inverse Robin problem. Inverse Probl. 23(3), 1311 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Seo, J.K., Kim, C., Jargal, A., Lee, K., Harrach, B.: A learning-based method for solving ill-posed nonlinear inverse problems: a simulation study of lung EIT. SIAM J. on Imaging Sci. 12(3), 1275–1295 (2019)

    Article  MathSciNet  Google Scholar 

  61. Stein, E.M.: Singular integrals and differentiability properties of functions (PMS-30), vol. 30. Princeton University Press, New Jersey (2016)

    Google Scholar 

  62. Su, Z., Udpa, L., Giovinco, G., Ventre, S., Tamburrino, A.: Monotonicity principle in pulsed eddy current testing and its application to defect sizing. In: Applied Computational Electromagnetics Society Symposium-Italy (ACES), 2017 International, pp. 1–2. IEEE (2017)

  63. Tamburrino, Antonello, Rubinacci, Guglielmo: A new non-iterative inversion method for electrical resistance tomography. Inverse Probl. 18(6), 1809 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  64. Tamburrino, A., Sua, Z., Ventre, S., Udpa, L., Udpa, S.S.: Monotonicity based imang method in time domain eddy current testing. Electromagnetic Nondestructive Evaluation (XIX) 41, 1 (2016)

    Google Scholar 

  65. Uzar, Neslihan, Ballikaya, Sedat: Investigation of classical and fractional Bose-Einstein condensation for harmonic potential. Physica A: Statistical Mechanics and its Appl. 392(8), 1733–1741 (2013)

    Article  MathSciNet  Google Scholar 

  66. Ventre, Salvatore, Maffucci, Antonio, Caire, François, Le Lostec, Nechtan, Perrotta, Antea, Rubinacci, Guglielmo, Sartre, Bernard, Vento, Antonio, Tamburrino, Antonello: Design of a real-time eddy current tomography system. IEEE Trans. on Magnetics 53(3), 1–8 (2017)

    Article  Google Scholar 

  67. Zhou, L., Harrach, B., Seo, J.K.: Monotonicity-based electrical impedance tomography for lung imaging. Inverse Probl. 34(4), 045005 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Dr. Jesse Railo for many fruitful discussions. The author would like to thank the anonymous referees for some useful comments to improve this article. Y.-H. Lin is partially supported by the Ministry of Science and Technology Taiwan, under the Columbus Program: MOST-109-2636-M-009-006 and MOST 110-2636-M-009-007, 2020-2025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hsuan Lin.

Additional information

Communicated by S. A. Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. The \(L^p\)-estimate for the fractional laplacian

Let us review the other estimates for solutions to the fractional Laplacian: The \(L^p\) estimate. Before doing so, let us recall some fundamental properties for the Riesz potential.

Proposition A.1

(Riesz potential) For \(0<s<1\) with \(n>2s\). Let V and F satisfy

$$\begin{aligned} V=(-\Delta )^{-s}F \text { in }\mathbb {R}^n, \end{aligned}$$

in the sense that V is the Riesz potential of order 2s of the function F.

  1. (a)

    If \(F\in L^1(\mathbb {R}^n)\), then there exists a constant \(C>0\) depending only on n and s such that

    $$\begin{aligned} \Vert V \Vert _{L^p_{\mathrm {w}}(\mathbb {R}^n)} \le C\Vert F \Vert _{L^1(\mathbb {R}^n)}, \end{aligned}$$

    where \(L^p_{\mathrm {w}}\) denotes the weak-\(L^p\) norm and \(p=\frac{n}{n-2s}\).

  2. (b)

    For \(r\in (1,\frac{n}{2s})\), \(F\in L^r(\mathbb {R}^n)\), then there exists a constant \(C>0\) depending only on n, s, and r such that

    $$\begin{aligned} \Vert V \Vert _{L^p(\mathbb {R}^n)} \le C\Vert F \Vert _{L^r(\mathbb {R}^n)}, \end{aligned}$$

    where \(p=\frac{nr}{n-2rs}\).

  3. (c)

    For \(r\in (\frac{n}{2s}, \infty )\), then there exists a constant \(C>0\) depending only on n, s, and r such that

    $$\begin{aligned} {[}u]_{C^\alpha (\mathbb {R}^n)}\le C\Vert F \Vert _{L^r(\mathbb {R}^n)}, \end{aligned}$$

    where \(\alpha =2s-\frac{n}{p}\) and \([u]_{C^\alpha (\mathbb {R}^n)}\) is the seminorm given in Sect. 2.

Proof

Parts (a) and (b) are classical results for the Riesz potential, and the proof can be found in Stein’s book [61, Chapter V]. For (c), we refer readers to [61, p.164] and [16]. \(\square \)

Furthermore, we have the following Hölder estimate for the fractional Laplacian, which was shown in [56, Proposition 1.7]. We state the result in the following proposition and the proof can be found in [56].

Proposition A.2

(\(C^\beta \)-estimate) For \(n\ge 1\), \(0<s<1\), let \(\Omega \subset \mathbb {R}^{n}\) be a bounded domain with \(C^{1,1}\) boundary \(\partial \Omega \). Let \(h\in C^\alpha (\Omega _e)\) for some \(\alpha \in (0,1)\). Let w be the solution of

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^s w=0 &{} \text { in }\Omega , \\ w=h &{} \text { in }\Omega _e. \end{array}\right. } \end{aligned}$$

Then the solution \(w\in C^\beta (\mathbb {R}^n)\), where \(\beta =\min \{s,\alpha \}\), and

$$\begin{aligned} \Vert w \Vert _{C^\beta (\mathbb {R}^n)}\le C\Vert h \Vert _{C^\alpha (\Omega _e)}, \end{aligned}$$

for some constant \(C>0\) depending only on \(\Omega \), \(\alpha \), and s.

The following proposition was also proved in [56], which is an important result in the proof of our Runge approximation (Theorem 3.2). We state the result and prove it for the sake of completeness. The proof is based on the preceding properties of the Riesz potential, the maximum principle for the fractional Laplacian and the \(C^\beta \)-estimate (Proposition A.2).

Proposition A.3

For \(n\ge 1\), \(0<s<1\), let \(\Omega \subseteq \mathbb {R}^{n}\) be a bounded domain with \(C^{1,1}\) boundary \(\partial \Omega \). For \(F\in L^r (\Omega )\), let v be the solution of

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^s v =F &{} \text { in }\Omega , \\ v=0 &{} \text { in }\Omega _e, \end{array}\right. } \end{aligned}$$
(A.1)

then we have:

  1. (a)

    Let \(n>2s\), \(r=1\), and \(p\in [1, \frac{n}{n-2s})\) be an arbitrary number, then there exists a constant \(C>0\) independent of v and F such that

    $$\begin{aligned} \Vert v \Vert _{L^p(\Omega )}\le C\Vert F \Vert _{L^1(\Omega )}. \end{aligned}$$
  2. (b)

    Let \(n>2s\), \(r\in (1,\frac{n}{2s})\) and \(p=\frac{nr}{n-2rs}\), then there exists a constant \(C>0\) independent of v and F such that

    $$\begin{aligned} \Vert v \Vert _{L^p(\Omega )}\le C\Vert F \Vert _{L^p (\Omega )}. \end{aligned}$$
  3. (c)

    Let \(n>2s\), \(r\in (\frac{n}{2s},\infty )\), and \(\beta =\min \left\{ s, 2s-\frac{n}{r} \right\} \), then there exists a constant \(C>0\) independent of v and F such that

    $$\begin{aligned} \Vert v \Vert _{C^\beta (\Omega )}\le C\Vert F \Vert _{L^r (\Omega )}. \end{aligned}$$
  4. (d)

    Let \(n=1\), \(s\in [\frac{1}{2},1)\), \(r\ge 1\), and any \(p<\infty \), then there exists a constant \(C>0\) independent of v and F such that

    $$\begin{aligned} \Vert v \Vert _{L^p(\Omega )}\le C\Vert F \Vert _{L^r (\Omega )}. \end{aligned}$$

Proof

(a) Let us extend the function F by 0 outside \(\Omega \), and we still denote the function as F. Let V be the solution of

$$\begin{aligned} (-\Delta )^s V=|F| \text { in }\mathbb {R}^n, \end{aligned}$$

so that \(V=(-\Delta )^{-s}|F|\) in \(\mathbb {R}^n\), where \((-\Delta )^{-s}|F|\) is the Riesz potential of |F|. By the definition of the Riesz potential, we have \(V\ge 0\) in \(\Omega _e\). Via the maximum principle, we obtain that \(|v|\le V\) in \(\Omega \). By applying Proposition A.1, one can see that

$$\begin{aligned} \Vert v \Vert _{L^q_{\mathrm {w}}(\Omega )}\le \Vert V \Vert _{L^q_{\mathrm {w}}(\Omega )}\le C\Vert F \Vert _{L^1(\Omega )}, \end{aligned}$$

if \(F\in L^1(\Omega )\) and for some constant \(C>0\) independent of v and F. Thus, one has

$$\begin{aligned} \Vert v \Vert _{L^r(\Omega )} \le C\Vert F \Vert _{L^1(\Omega )}, \end{aligned}$$

for some constant \(C>0\) independent of v and F. This proves (a).

(b) Similarly, the proof of (b) can be completed by using the result (b) in Proposition A.1 and the maximum principle for the fractional Laplacian as before. Furthermore, when \(r=\frac{n}{2s}\), it is easy to see that \(F\in L^{r}(\Omega )\subset L^{\widetilde{r}}(\Omega )\), for any \(\widetilde{r}\in [1,r]\) (since \(\Omega \) is bounded). We still have the \(L^p\) estimate for the solution in the borderline case \(r=\frac{n}{2s}\).

(c) Let us write \(v=\widetilde{v}+ w\), where \(\widetilde{v}\) and w are given by

$$\begin{aligned} \widetilde{v} =(-\Delta )^{-s}F \text { in }\mathbb {R}^n, \end{aligned}$$
(A.2)

and

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^s w =0 &{} \text { in }\Omega , \\ w=\widetilde{v} &{} \text { in }\Omega _e. \end{array}\right. } \end{aligned}$$
(A.3)

By using (A.2) and Proposition A.1 (c), there exists a constant \(C>0\) depending only on n, s, and r such that

$$\begin{aligned} {[}\widetilde{v}]_{C^\alpha (\mathbb {R}^n)}\le C\Vert F \Vert _{L^r(\mathbb {R}^n)}, \quad \text { where }\alpha =2s-\frac{n}{r}. \end{aligned}$$

Since \(\Omega \) is bounded and F is compactly supported, one has \(\widetilde{v}\) decays at infinity. This implies that

$$\begin{aligned} \Vert \widetilde{v} \Vert _{C^\alpha (\mathbb {R}^n)}\le C\Vert F \Vert _{L^r(\mathbb {R}^n)}, \quad \text { where }\alpha =2s-\frac{n}{r}, \end{aligned}$$
(A.4)

for some constnat \(C>0\) depending only on n, s, r and \(\Omega \).

On the other hand, we can apply Proposition A.2 to derive the Hölder estimate for the solution w of (A.3) that

$$\begin{aligned} \Vert w \Vert _{C^\beta (\mathbb {R}^n)}\le C\Vert \widetilde{v} \Vert _{C^\alpha (\Omega _e)}, \end{aligned}$$
(A.5)

for some constant \(C>0\) depending only on \(\Omega \), \(\alpha \), and s, where

$$\begin{aligned} \beta =\min \{\alpha , s\}=\min \left\{ s, 2s-\frac{n}{r}\right\} . \end{aligned}$$

Combining with (A.4) and (A.5), we can obtain the Hölder estimate for the solution \(v=\widetilde{v}+w\) such that (c) holds. Moreover, since \(v\in C^\beta (\overline{\Omega })\) with \(v=0\) in \(\Omega _e\), we must have \(v\in L^p(\mathbb {R}^n)\) for any \(p\ge 1\).

(d) Notice that for \(s<\frac{1}{2}\), we have \(n=1>2s\) automatically, such that the case (d) holds by applying the results either (a) or (b). On the other hand, for the case \(1=n\le 2s\), this implies that \(\frac{1}{2}\le s <1\). Under this situation, any bounded domain is of the form \(\Omega =(a,b)\subset \mathbb {R}\). By [2], the Green function G(xy) for the exterior value problem (A.1) is explicit. Furthermore, \(G(\cdot ,y)\in L^\infty (\Omega )\) when \(s>\frac{1}{2}\) and \(G(x,y)\in L^r(\Omega )\) for any \(r<\infty \) when \(s=\frac{1}{2}\). Therefore, one has

$$\begin{aligned} \Vert v \Vert _{L^\infty (\Omega )}\le C\Vert F \Vert _{L^1(\Omega )}, \end{aligned}$$

for some constant \(C>0\) independent of v and F, where \(n<2s\). For the case \(n=2s\), we have either

$$\begin{aligned} \Vert v \Vert _{L^p(\Omega )}\le C\Vert F \Vert _{L^1(\Omega )}, \quad \text { for all }p<\infty , \end{aligned}$$

or

$$\begin{aligned} \Vert v \Vert _{L^\infty (\Omega )}\le C\Vert F \Vert _{L^r(\Omega )}, \quad \text { for }r>1, \end{aligned}$$

for some constant \(C>0\) independent of v and F. \(\square \)

Remark A.4

From the \(L^p\) estimate of s-harmonic functions, we have:

  1. (a)

    No matter what exponent \(r\ge 1\) and what space dimension n are, for any \(F\in L^r(\Omega )\) with \(\Omega \subset \mathbb {R}^n\) in the statement of Proposition A.3, then we can always conclude that the solution v of (A.1) must belong to \(L^p(\mathbb {R}^n)\), for some \(p> 1\).

  2. (b)

    Moreover, since the domain \(\Omega \) is bounded in \(\mathbb {R}^n\), then we can confine the exponent p in the region \(p \in (1,2)\). The condition \(p \in (1,2)\) plays an essential role in order to prove Proposition 3.3 (see [9, Section 4] for more detailed discussions about the strong uniqueness of the s-harmonic function). Meanwhile, we also need to use the \(L^p\)-estimate to prove the Runge approximation via the strong uniqueness for the fractional Laplacian in Sect. 3.

Appendix B. The maximum principle

We review the known maximum principle for the fractional Laplacian in the end of this work. These results were shown in [5, 54] for the fractional Laplacian equation and [45, 46] for the fractional Schrödinger equation. For the sake of convenience, we state the results as follows.

Proposition B.1

(The maximum principle) Let \(\Omega \subset \mathbb {R}^n\), \(n\ge 1\) be a bounded domain with Lipschitz boundary \(\partial \Omega \), and \(0<s<1\). Let \(v\in H^s(\mathbb {R}^n)\) be the unique solution of

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^s v=F &{} \text { in }\Omega , \\ v=g &{}\text { in }\Omega _e. \end{array}\right. } \end{aligned}$$

Suppose that \(0\le F\in L^\infty (\Omega )\) in \(\Omega \) and \(0\le g \in L^\infty (\Omega _e)\) in \(\Omega _e\). Then \(v\ge 0\) in \(\Omega \). Moreover, if \(g\not \equiv 0\) in \(\Omega _e\), then \(v>0\) in \(\Omega \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YH. Monotonicity-based inversion of fractional semilinear elliptic equations with power type nonlinearities. Calc. Var. 61, 188 (2022). https://doi.org/10.1007/s00526-022-02299-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02299-0

Mathematics Subject Classification

Navigation