Skip to main content
Log in

The \(Q_k\) flow on complete non-compact graphs

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We establish the long time existence of complete non-compact weakly convex and smooth hypersurfaces \(\Sigma _t\) evolving by the \(Q_k\)-flow. We show that the maximum existence time T depends on the dimension \(d_W\) of the vector space \(W{:}{=}\{w \in \mathbb {R}^{n+1}: \sup _{X\in \Sigma _0} |\langle X,w\rangle | = +\infty \}\) which contains each direction in which our initial data \(\Sigma _0\) is infinite. If \(d_W=\text {dim}(W) \ge n-k+1\), then the solution \(\Sigma _t\) exists for all time \(t \in (0,+\infty )\); if \(d_W=\text {dim}(W) \le n-k\), then the solution \(\Sigma _t\) exsist up to some finite time \(T < +\infty \). In the latter case, the trace at infinity \(\Gamma _t\) of the solution \(\Sigma _t\) is a closed convex viscosity solution of the \((n-d_W)\)-dimensional \(Q_k\) flow on \(t \in (0,T)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andrews, B.: Contraction of convex hypersurfaces in Euclidean space. Calc. Variation. Partial Diff. Eq. 2(2), 151–171 (1994)

    Article  MathSciNet  Google Scholar 

  2. Caffarelli, L., Nirenberg, L., Spruck, J.: Nonlinear second-order elliptic equations V. The Dirichlet problem for Weingarten hypersurfaces. Commun. Pure Appl. Math. 41(1), 47–70 (1988)

    Article  MathSciNet  Google Scholar 

  3. Caputo, M.C., Daskalopoulos, P.: Highly degenerate harmonic mean curvature flow. Calc. Variation. Partial Diff. Eq. 35(3), 365–384 (2009)

    Article  MathSciNet  Google Scholar 

  4. Caputo, M.C., Daskalopoulos, P., Sesum, N.: On the evolution of convex hypersurfaces by the \({Q}_k\) flow. Commun. Partial Diff. Eq. 35(3), 415–442 (2010)

    Article  Google Scholar 

  5. Choi, K., Daskalopoulos, P., Kim, L., Lee, K.-A.: The evolution of complete non-compact graphs by powers of Gauss curvature. J. für die reine und angewandte Mathematik 2019(757), 131–158 (2019)

    Article  MathSciNet  Google Scholar 

  6. Daskalopoulos, P., Hamilton, R.: Harmonic mean curvature flow on surfaces of negative Gaussian curvature. Commun. Anal. Geom. 14(5), 907–943 (2006)

    Article  MathSciNet  Google Scholar 

  7. Daskalopoulos, P., Hamilton, R., Sesum, N.: Classification of compact ancient solutions to the curve shortening flow. J. Diff. Geom. 84(3), 455–464 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Daskalopoulos, P., Sesum, N.: The harmonic mean curvature flow of nonconvex surfaces in \(\mathbb{R}^3\). Calc. Variation. Partial Diff. Eq. 37(1), 187–215 (2010)

    Article  Google Scholar 

  9. Dieter, S.: Nonlinear degenerate curvature flows for weakly convex hypersurfaces. Calc. Variation. Partial Diff. Eq. 22(2), 229–251 (2005)

    Article  MathSciNet  Google Scholar 

  10. Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. 130(3), 453–471 (1989)

    Article  MathSciNet  Google Scholar 

  11. Ecker, K., Huisken, G.: Interior estimates for hypersurfaces moving by mean curvature. Invent. Math. 105(1), 547–569 (1991)

    Article  MathSciNet  Google Scholar 

  12. Sáez, M., Schnürer, O.C.: Mean curvature flow without singularities. J. Diff. Geom. 97(3), 545–570 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Sheng, W., Urbas, J., Wang, X.-J.: Interior curvature bounds for a class of curvature equations. Duke Math. J. 123(2), 235–264 (2004)

    Article  MathSciNet  Google Scholar 

  14. Tian, G., Wang, X.-J.: A priori estimates for fully nonlinear parabolic equations. Int. Math. Res. Notices, rns169, (2012)

  15. Urbas, J.: An expansion of convex hypersurfaces. J. Diff. Geom. 33(1), 91–125 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Wu, H.-H.: The spherical images of convex hypersurfaces. J. Diff. Geom. 9(2), 279–290 (1974)

    MathSciNet  MATH  Google Scholar 

  17. Xiao, L.: General curvature flow without singularities (2016). arXiv:1604.05743

Download references

Acknowledgements

K. Choi has been partially supported by NSF grant DMS-1600658 and KIAS Individual Grant MG078901. P. Daskalopoulos has been partially supported by NSF grants DMS-1600658 and DMS-1900702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiota Daskalopoulos.

Additional information

Communicated by A. Neves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, K., Daskalopoulos, P. The \(Q_k\) flow on complete non-compact graphs. Calc. Var. 61, 73 (2022). https://doi.org/10.1007/s00526-021-02162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02162-8

Navigation