Skip to main content
Log in

Multiple solutions of a parameter-dependent quasilinear elliptic equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Consider the quasilinear elliptic equation

where \(\Omega \subset \mathbb R^N\) (\(N\ge 2\)) is a bounded domain with smooth boundary and \(\lambda >0\) is a parameter. For the quasilinear term, we assume that \(a_{ij}=a_{ji}\) and \(a_{ij}(x,s)\)’s growth is like \((1+s^{2})\delta _{ij}\). The nonlinearity of power growth \(f(x,s)=|s|^{r-2}s\) with \(2<r<4\) acts as a typical example of the nonlinear term f, a case in which less results are known compared with the cases \(1<r<2\) and \(4<r<4N/(N-2)^+\). We show the structure of solutions depends keenly upon the parameter \(\lambda \). More precisely, while such an equation has no nontrivial solution for \(\lambda \) small, we prove that both the number of solutions with positive energies and the number of solutions with negative energies tend to infinity as \(\lambda \rightarrow +\infty \). Nodal properties are determined for six solutions among all of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arcoya, D., Boccardo, L.: Critical points for multiple integrals of the calculus of variations. Arch. Ration. Mech. Anal. 134, 249–274 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arcoya, D., Boccardo, L., Orsina, L.: Critical points for functionals with quasilinear singular Euler–Lagrange equations. Calc. Var. Partial Differ. Equ. 47, 159–180 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartsch, T., Liu, Z.: On a superlinear elliptic \(p\)-Laplacian equation. J. Differ. Equ. 198, 149–175 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartsch, T., Liu, Z., Weth, T.: Sign changing solutions of superlinear Schrödinger equations. Commun. Partial Differ. Equ. 29, 25–42 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartsch, T., Liu, Z., Weth, T.: Nodal solutions of a \(p\)-Laplacian equation. Proc. Lond. Math. Soc. 91, 129–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bass, F.G., Nasonov, N.N.: Nonlinear electromagnetic-spin waves. Phys. Rep. 189, 165–223 (1990)

    Article  Google Scholar 

  7. Brezis, H.: On a characterization of flow-invariant sets. Commun. Pure Appl. Math. 23, 261–263 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56, 213–226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hasse, R.W.: A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z. Phys. B 37, 83–87 (1980)

    Article  MathSciNet  Google Scholar 

  10. Kosevich, A.M., Ivanov, B.A., Kovalev, A.S.: Magnetic solitons. Phys. Rep. 194, 117–238 (1990)

    Article  Google Scholar 

  11. Kurihara, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981)

  12. Litvak, A.G., Sergeev, A.M.: One dimensional collapse of plasma waves. JETP Lett. 27, 517–520 (1978)

    Google Scholar 

  13. Liu, J., Guo, Y.: Critical point theory for nonsmooth functionals. Nonlinear Anal. 66, 2731–2741 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, J., Wang, Y., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations. II. J. Differ. Equ. 187, 473–493 (2003)

    Article  MATH  Google Scholar 

  15. Liu, J., Wang, Y., Wang, Z.-Q.: Solitons for quasilinear Schrödinger equations via the Nehari method. Commun. Partial Differ. Equ. 29, 879–901 (2004)

    Article  MATH  Google Scholar 

  16. Liu, J., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations. I. Proc. Am. Math. Soc. 131, 441–448 (2003)

    Article  MATH  Google Scholar 

  17. Liu, J., Wang, Z.-Q.: Multiple solutions for quasilinear elliptic equations with a finite potential well. J. Differ. Equ. 257, 2874–2899 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, X., Liu, J., Wang, Z.-Q.: Quasilinear elliptic equations via perturbation method. Proc. Am. Math. Soc. 141, 253–263 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, X., Liu, J., Wang, Z.-Q.: Quasilinear elliptic equations with critical growth via perturbation method. J. Differ. Equ. 254, 102–104 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, X., Liu, J., Wang, Z.-Q.: Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method. Commun. Partial Differ. Equ. 39, 2216–2239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Z., Sun, J.: Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations. J. Differ. Equ. 172, 257–299 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, Z., Wang, Z.-Q.: On Clark’s theorem and its applications to partially sublinear problems. Ann. Inst. H. Poincaré Anal. Non-linéaire 32, 1015–1037 (2015)

    Article  MATH  Google Scholar 

  23. Makhankov, V.G., Fedyanin, V.K.: Non-linear effects in quasi-one-dimensinal models of condensed matter theory. Phys. Rep. 104, 1–86 (1984)

    Article  MathSciNet  Google Scholar 

  24. Poppenberg, M., Schmitt, K., Wang, Z.-Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 14, 329–344 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Porkolab, M., Goldman, M.V.: Upper hybrid solitons and oscillating two-stream instabilities. Phys. Fluids. 19, 872–881 (1976)

    Article  MathSciNet  Google Scholar 

  26. Quispel, G.R.W., Capel, H.W.: Equation of motion for the Heisenberg spin chain. Phys. A. 110, 41–80 (1982)

    Article  MathSciNet  Google Scholar 

  27. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, No. 65, AMS, Providence (1986)

  28. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ruiz, D., Siciliano, G.: Existence of ground states for a modified nonlinear Schrödinger equation. Nonlinearity 23, 1221–1233 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Struwe, M.: Variational Methods. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for their useful comments. Y. Jing is supported by National Natural Science Foundation of China (No. 11271265). Z. Liu is supported by National Natural Science Foundation of China (Nos. 11271265, 11331010) and Beijing Center for Mathematics and Information Interdisciplinary Sciences. Z.-Q. Wang is supported by National Natural Science Foundation of China (No. 11271201) and Beijing Center for Mathematics and Information Interdisciplinary Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoli Liu or Zhi-Qiang Wang.

Additional information

Communicated by P. Rabinowitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, Y., Liu, Z. & Wang, ZQ. Multiple solutions of a parameter-dependent quasilinear elliptic equation. Calc. Var. 55, 150 (2016). https://doi.org/10.1007/s00526-016-1067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1067-7

Mathematics Subject Classification

Navigation