Skip to main content
Log in

Non-existence and instantaneous extinction of solutions for singular nonlinear fractional diffusion equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We show non-existence of solutions of the Cauchy problem in \(\mathbb {R}^N\) for the nonlinear parabolic equation involving fractional diffusion \(\partial _t u + {{\mathrm{(-\Delta )}}}^{s}\phi (u)= 0,\) with \(0<s<1\) and very singular nonlinearities \(\phi \). It is natural to consider nonnegative data and solutions. More precisely, we prove that when \(\phi (u)=-1/u^n\) with \(n>0\), or \(\phi (u) = \log u\), and we take nonnegative \(L^1\) initial data, there is no solution of the problem in any dimension \(N\ge 2\). In one space dimension the situation is not so radical, and we find the optimal range of non-existence when \(N=1\) in terms of s and n. As a complement, non-existence is then proved for more general nonlinearities \(\phi \), and it is also extended to the related elliptic problem of nonlinear nonlocal type: \(u + {{\mathrm{(-\Delta )}}}^{s}\phi (u) = f\) with the same type of nonlinearity \(\phi \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Actually, less stringent conditions on \(\phi \) are acceptable.

References

  1. Bénilan, P.: Equations d’évolution dans un espace de Banach quelconque et applications. Ph. D. Thesis, Univ. Orsay (1972) (in French)

  2. Bénilan, P., Brezis, H., Crandall, M.G.: A semilinear equation in \(L^1({\mathbb{R}^N})\). Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2(4), 523–555 (1975)

    MathSciNet  MATH  Google Scholar 

  3. Bonforte, M., Figalli, A.: Total variation flow and sign fast diffusion in one dimension. J. Differ. Equ. 252(8), 4455–4480 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonforte, M., Sire, Y., Vázquez, J.L.: Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discret. Contin. Dyn. 35, 5725–5767 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonforte, M., Vázquez, J.L.: Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Adv. Math. 250, 242–284 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonforte, M., Vázquez, J.L.: A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Arch. Ration. Mech. Anal. 218, 317–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonforte, M., Vázquez, J.L.: Fractional nonlinear degenerate diffusion equations on bounded domains part I. Existence, uniqueness and upper bounds. Nonlin. Anal. TMA. 131, 363–398 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crandall, M.G., Liggett, T.M.: Generation of semi-groups of nonlinear transformations on general Banach spaces. Am. J. Math. 93, 265–298 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daskalopoulos, P., del Pino, M.A.: On fast diffusion nonlinear heat equations and a related singular elliptic problem. Indiana Univ. Math. J. 43(2), 703–728 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daskalopoulos, P., del Pino, M.A.: On a singular diffusion equation. Commun. Anal. Geom. 3(3–4), 523–542 (1995)

  11. Daskalopoulos, P., del Pino, M.A.: On nonlinear parabolic equations of very fast diffusion. Arch. Ration. Mech. Anal. 137(4), 363–380 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A fractional porous medium equation. Adv. Math. 226(2), 1378–1409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. De Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A general fractional porous medium equation. Commun. Pure Appl. Math. 65(9), 1242–1284 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: Classical solutions for a logarithmic fractional diffusion equation. J. Math. Pures Appl. 6(9), 901–924 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kim, S., Lee, K.A.: Hölder estimates for singular nonlocal parabolic equations. J. Funct. Anal. 261, 3482–3518 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Landkof, N.S.: Foundations of modern potential theory. Springer-Verlag, Berlin (1972)

    Book  MATH  Google Scholar 

  17. Penrose, O., Fife, P.C.: Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Phys. D 243, 44–62 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rodriguez, A., Vázquez, J.L., Esteban, J.R.: The maximal solution of the logarithmic fast diffusion equation in two space dimensions. Adv. Differ. Equ. 2(6), 867–894 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Schimperna, G., Segatti, A., Zelik, S.: Asymptotic uniform boundedness of energy solutions to the Penrose-Fife model. J. Evol. Equ. 12, 863–890 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schimperna, G., Segatti, A., Zelik, S.: On a singular heat equation with dynamic boundary conditions. Asymptot. Anal. 97, 27–59 (2016)

    Article  MathSciNet  Google Scholar 

  21. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, NJ (1970)

  22. Vázquez, J.L., de Pablo, A., Quirós, F., Rodríguez, A.: Classical solutions and higher regularity for nonlinear fractional diffusion equations. To appear in J. Europ. Math. Soc. (2013). arXiv:1311.7427

  23. Vázquez, J.L.: Existence of maximal solutions for some very singular nonlinear fractional diffusion equations in 1D, to appear in J. Evol. Eq. (2016). arXiv:1505.04902

  24. Vázquez, J.L.: Nonexistence of solutions for nonlinear heat equations of fast-diffusion type. J. Math. Pures. Appl. 71, 503–526 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Vázquez, J.L.: The porous medium equation. Mathematical theory, Oxford mathematical monographs. The Clarendon Press, Oxford University Press, Oxford (2007)

    Google Scholar 

  26. Vázquez, J.L.: Smoothing and decay estimates for nonlinear diffusion equations. Equations of porous medium type. Oxford Lecture Series in Mathematics and its Applications, 33. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  27. Vázquez, J.L.: Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Eur. Math. Soc. 16, 769–803 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vázquez, J.L., Volzone, B.: Symmetrization for linear and nonlinear fractional parabolic equations of porous medium type. J. Math. Pures Appl. (9) 101(5), 553–582 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vázquez, J.L., Volzone, B.: Optimal estimates for fractional fast diffusion equations. J. Math. Pures Appl. 103, 535–556 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Work partially supported by Spanish Project MTM2011-24696. Work initiated during a stay of the authors at the Isaac Newton Institute of the University of Cambridge in the spring of 2014. A.S. have been supported by Gruppo Nazionale per l’Analisi Matematica la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INDAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Luis Vázquez.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonforte, M., Segatti, A. & Vázquez, J.L. Non-existence and instantaneous extinction of solutions for singular nonlinear fractional diffusion equations. Calc. Var. 55, 68 (2016). https://doi.org/10.1007/s00526-016-1005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1005-8

Mathematics Subject Classification

Navigation