Skip to main content
Log in

Unstable Willmore surfaces of revolution subject to natural boundary conditions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In the class of surfaces with fixed boundary, critical points of the Willmore functional are naturally found to be those solutions of the Euler-Lagrange equation where the mean curvature on the boundary vanishes. We consider the case of symmetric surfaces of revolution in the setting where there are two families of stable solutions given by the catenoids. In this paper we demonstrate the existence of a third family of solutions which are unstable critical points of the Willmore functional, and which spatially lie between the upper and lower families of catenoids. Our method does not require any kind of smallness assumption, and allows us to derive some additional interesting qualitative properties of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bauer M., Kuwert E.: Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Not. 2003(10), 553–576 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergner M., Dall’Acqua A., Fröhlich S.: Symmetric Willmore surfaces of revolution satisfying natural boundary conditions. Calc. Var. Partial Differ. Equ. 39(3–4), 361–378 (2010)

    Article  MATH  Google Scholar 

  3. Bergner, M., Dall’Acqua, A., Fröhlich, S.: Willmore surfaces of revolution with two prescribed boundary circles. J. Geom. Anal. (2012), On-line first

  4. Bernard Y., Riviere T.: Local Palais-Smale sequences for the Willmore functional. Comm. Anal. Geom. 19(3), 563–600 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blaschke, W.: Vorlesungen über Differentialgeometrie, vol. I–III, (1929)

  6. Bryant R.L.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20(1), 23–53 (1984)

    MATH  Google Scholar 

  7. Bryant R., Griffiths P.: Reduction for constrained variational problems and \({\int \frac{1}{2}k^{2} ds}\). Am. J. Math. 108(3), 525–570 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dacorogna B.: Introduction to the Calculus of Variations. Imperial College Press, London (2004)

    Book  MATH  Google Scholar 

  9. Dall’Acqua, A.: Uniqueness for the homogeneous Dirichlet Willmore boundary value problem. Ann. Glob. Anal. Geom. On-line first.

  10. Dall’Acqua A., Deckelnick K., Grunau H.-C.: Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv. Calc. Var. 1(4), 379–397 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Dall’Acqua A., Fröhlich S., Grunau H.-C., Schieweck F.: Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data. Adv. Calc. Var. 4(1), 1–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deckelnick K., Grunau H.-C.: A Navier boundary value problem for Willmore surfaces of revolution. Analysis 29(3), 229–258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grunau, H.-C.: The asymptotic shape of a boundary layer of symmetric willmore surfaces of revolution. In: Bandle, C. et al. (eds.) Inequalities and Applications 2010, Volume 161 of International Series of Numerical Mathematics, pp. 19–29. Springer, Basel (2012)

  14. Hertrich-Jeromin U., Pinkall U.: Ein Beweis der Willmoreschen Vermutung für Kanaltori. J. Reine Angew. Math. 430, 21–34 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Kuwert, E.: The Willmore functional. Lectures held at ETH in 2007

  16. Kuwert, E., Li, Y.: W 2,2-conformal immersions of a closed Riemann surface into \({\mathbb{R}^n}\). Arvxiv peprint arXiv:1007.3967 (2010)

  17. Kuwert, E., Schätzle, R.: Closed surfaces with bounds on their Willmore energy. To appear in Annali Sc. Norm. Sup. Pisa

  18. Langer J., Singer D.A.: Curve straightening and a minimax argument for closed elastic curves. Topology 24(1), 75–88 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nitsche J.C.C.: Boundary value problems for variational integrals involving surface curvatures. Q. Appl. Math. 51(2), 363–387 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Palmer B.: The conformal Gauss map and the stability of Willmore surfaces. Ann. Glob. Anal. Geom. 9(3), 305–317 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Palmer B.: Uniqueness theorems for Willmore surfaces with fixed and free boundaries. Indiana Univ. Math. J. 49(4), 1581–1602 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rivière T.: Analysis aspects of Willmore surfaces. Invent. Math. 174(1), 1–45 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schätzle R.: The Willmore boundary problem. Calc. Var. Partial Differ. Equ. 37(3–4), 275–302 (2010)

    Article  MATH  Google Scholar 

  24. Simon L.: Existence of surfaces minimizing the Willmore functional. Comm. Anal. Geom. 1(2), 281–326 (1993)

    MathSciNet  MATH  Google Scholar 

  25. Struwe, M.: Plateau’s Problem and the Calculus Of Variations. Mathematical Notes, vol. 35. Princeton University Press, Princeton

  26. Thomsen G.: Über konforme Geometrie I: Grundlagen der konformen Flächentheorie. (German). Abh. Math. Sem. Hamburg. 3, 31–56 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  27. Weiner J.L.: On a problem of Chen, Willmore, et al. Indiana Univ. Math. J. 27(1), 19–35 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  28. Willmore T.J.: Riemannian Geometry. Oxford Science Publications. The Clarendon Press Oxford University Press, New York (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Dall’Acqua.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dall’Acqua, A., Deckelnick, K. & Wheeler, G. Unstable Willmore surfaces of revolution subject to natural boundary conditions. Calc. Var. 48, 293–313 (2013). https://doi.org/10.1007/s00526-012-0551-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0551-y

Mathematics Subject Classification (2000)

Navigation