Skip to main content
Log in

Harmonic mappings and conformal minimal immersions of Riemann surfaces into \({\mathbb {R}^{\rm N}}\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove that for any open Riemann surface \({\mathcal{N}}\), natural number N ≥ 3, non-constant harmonic map \({h:\mathcal{N} \to \mathbb{R}}\) N−2 and holomorphic 2-form \({\mathfrak{H}}\) on \({\mathcal{N}}\) , there exists a weakly complete harmonic map \({X=(X_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}\) with Hopf differential \({\mathfrak{H}}\) and \({(X_j)_{j=3,\ldots,{\sc N}}=h.}\) In particular, there exists a complete conformal minimal immersion \({Y=(Y_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}\) such that \({(Y_j)_{j=3,\ldots,{\sc N}}=h}\) . As some consequences of these results (1) there exist complete full non-decomposable minimal surfaces with arbitrary conformal structure and whose generalized Gauss map is non-degenerate and fails to intersect N hyperplanes of \({\mathbb{CP}^{{\sc N}-1}}\) in general position. (2) There exist complete non-proper embedded minimal surfaces in \({\mathbb{R}^{\sc N},}\) \({\forall\,{\sc N} >3 .}\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors L.V.: The theory of meromorphic curves. Acta Soc. Sci. Fennicae. Nova Ser. A 3, 1–31 (1941)

    MathSciNet  Google Scholar 

  2. Alarcón A., Fernández I.: Complete minimal surfaces in \({\mathbb {R}^3}\) with a prescribed coordinate function. Differ. Geom. Appl. 29(1 suppl), S9–S15 (2011)

    Article  MATH  Google Scholar 

  3. Alarcón, A., Fernández, I., López, F.J.: Complete minimal surfaces and harmonic functions. Comment. Math. Helv. (2010, in press)

  4. Alarcón A., López F.J.: Minimal surfaces in \({\mathbb {R}^3}\) properly projecting into \({\mathbb {R}^2}\) . J. Differ. Geom. (2012, in press)

  5. Alarcón A., López F.J.: Null curves in \({\mathbb {C}^3}\) and Calabi-Yau conjectures. Math. Ann. (2012, in press)

  6. Chern S.S.: Minimal Surfaces in an Euclidean Space of N Dimensions. Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 187–198. Princeton Univ. Press, Princeton (1965)

  7. Chern S.S., Osserman R.: Complete minimal surfaces in euclidean n-space. J. Anal. Math. 19, 15–34 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colding T.H., Minicozzi W.P.: The Calabi-Yau conjectures for embedded surfaces. Ann. Math. 167(2), 211–243 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fujimoto H.: Extensions of the big Picard’s theorem. Tohoku Math. J. 24, 415–422 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fujimoto H.: On the Gauss map of a complete minimal surface in \({\mathbb {R}^{m} }\) . J. Math. Soc. Jpn. 35, 279–288 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fujimoto H.: Modified defect relations for the Gauss map of minimal surfaces. II. J. Differ. Geom. 31, 365–385 (1990)

    MathSciNet  MATH  Google Scholar 

  12. Fujimoto H.: Examples of complete minimal surfaces in \({\mathbb {R}^m}\) whose Gauss maps omit m(m + 1)/2 hyperplanes in general position. Sci. Rep. Kanazawa Univ. 33, 37–43 (1988)

    MathSciNet  Google Scholar 

  13. Jones P.W.: A complete bounded complex submanifold of \({\mathbb {C}^3}\) . Proc. Am. Math. Soc. 76, 305–306 (1979)

    MATH  Google Scholar 

  14. Jorge L.P.M., Xavier F.: A complete minimal surface in \({\mathbb {R}^3}\) between two parallel planes. Ann. Math. 112(2), 203–206 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Klotz Milnor T.: Mapping surfaces harmonically into E n. Proc. Am. Math. Soc. 78, 269–275 (1980)

    MATH  Google Scholar 

  16. Meeks III, W.H., Pérez, J., Ros A.: The embedded Calabi-Yau conjectures for finite genus (Preprint)

  17. Osserman R.: Global properties of minimal surfaces in E 3 and E n. Ann. Math. 80(2), 340–364 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Osserman, R.: A Survey of Minimal Surfaces. Second edition. Dover Publications, Inc., New York, vi+207 pp. (1986)

  19. Ru M.: On the Gauss map of minimal surfaces immersed in \({\mathbb {R}^n}\) . J. Differ. Geom. 34, 411–423 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Wu, H.: The Equidistribution Theory of Holomorphic Curves. Annals of Mathematics Studies, No. 64, Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1970)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Alarcón.

Additional information

Communicated by R. Schoen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alarcón, A., Fernández, I. & López, F.J. Harmonic mappings and conformal minimal immersions of Riemann surfaces into \({\mathbb {R}^{\rm N}}\) . Calc. Var. 47, 227–242 (2013). https://doi.org/10.1007/s00526-012-0517-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0517-0

Mathematics Subject Classification

Navigation