Skip to main content
Log in

Abstract

It is well-known that duality in the Monge–Kantorovich transport problem holds true provided that the cost function c : X × Y → [0, ∞] is lower semi-continuous or finitely valued, but it may fail otherwise. We present a suitable notion of rectification c r of the cost c, so that the Monge-Kantorovich duality holds true replacing c by c r . In particular, passing from c to c r only changes the value of the primal Monge–Kantorovich problem. Finally, the rectified function c r is lower semi-continuous as soon as X and Y are endowed with proper topologies, thus emphasizing the role of lower semi-continuity in the duality-theory of optimal transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beiglböck, M., Léonard, C., Schachermayer, W.: A general duality theorem for the Monge–Kantorovich transport problem. (2009, submitted)

  2. Beiglböck, M., Schachermayer, W.: Duality for borel measurable cost functions. Trans. Am. Math. Soc. (2009, to appear)

  3. Caffarelli L.A., McCann R.J.: Free boundaries in optimal transport and Monge–Ampère obstacle problems. Ann. Math. (2) 171(2), 673–730 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Acosta A.: Invariance principles in probability for triangular arrays of B-valued random vectors and some applications. Ann. Probab. 10(2), 346–373 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dudley, R.M.: Probabilities and metrics. In: Convergence of laws on metric spaces, with a view to statistical testing, Lecture Notes Series, No. 45. Matematisk Institut, Aarhus Universitet, Aarhus (1976)

  6. Dudley, R.M.: Real analysis and probability. In: Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge University Press, Cambridge (2002) (Revised reprint of the 1989 original)

  7. Fernique, X.: Sur le théorème de Kantorovich–Rubinstein dans les espaces polonais. In: Seminar on probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), Lecture Notes in Math., vol. 850, pp. 6–10. Springer, Berlin (1981)

  8. Figalli A.: The optimal partial transport problem. Arch. Ration. Mech. Anal. 195(2), 533–560 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gaffke N., Rüschendorf L.: On a class of extremal problems in statistics. Math. Operationsforsch. Statist. Ser. Optim. 12(1), 123–135 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kantorovich, L.: On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS (N.S.) 37, 199–201 (1942)

  11. Kechris, A.S.: Classical descriptive set theory. In: Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York (1995)

  12. Kellerer H.G.: Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67(4), 399–432 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kantorovič L.V., Rubinšteĭn G.Š: On a space of completely additive functions. Vestnik Leningrad. Univ. 13(7), 52–59 (1958)

    MathSciNet  Google Scholar 

  14. Mikami T.: A simple proof of duality theorem for Monge–Kantorovich problem. Kodai Math. J. 29(1), 1–4 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mikami T., Thieullen M.: Duality theorem for the stochastic optimal control problem. Stochastic Process. Appl. 116(12), 1815–1835 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Szulga A.: On minimal metrics in the space of random variables. Teor. Veroyatnost. i Primenen. 27(2), 401–405 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Villani, C.: Topics in optimal transportation. In: Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence (2003)

  18. Villani C.: Optimal Transport. Old and new. In: Grundlehren der mathematischen Wissenschaften, vol. 338, Springer, Berlin (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Pratelli.

Additional information

Communicated by N. Trudinger.

The first author acknowledges financial support from the Austrian Science Fund (FWF) under Grant P21209. The work of the second author was partially supported by the ERC Starting Grant Analysis of optimal sets and optimal constants: old questions and new results and by the MEC of Spain Government through the 2008 project MTM2008-03541. The second author gratefully acknowledges the hospitality of the University of Vienna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beiglböck, M., Pratelli, A. Duality for rectified cost functions. Calc. Var. 45, 27–41 (2012). https://doi.org/10.1007/s00526-011-0449-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0449-0

Mathematics Subject Classification (2000)

Navigation