Skip to main content

Advertisement

Log in

Abstract

In this paper we present a method to untangle smooth knots by a gradient flow for a suitable energy. We show that the flow of smooth initial knots remains smooth for all time and approaches asymptotically an “optimal embedding” in its isotopy type. The method is to set up a gradient flow for the total energy of knots, which consists of bending energy and the Möbius energy of knots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abrams A., Cantarella J., Fu J.H.G., Ghomi M., Howard R.: Circles minimize most knot energies. Topology 42(2), 381–394 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aubin T.: Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der Mathematischen Wissenschaften, 252. Springer-Verlag, New York (1982)

    Google Scholar 

  3. Buck G., Simon J.: Thickness and crossing number of knots. Topol. Appl. 91(3), 245–257 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. do Carmo M.P.: Differential geometry of curves and surfaces, translated from the Portuguese. Prentice-Hall, Inc., Englewood Cliffs, NJ (1976)

    Google Scholar 

  5. Dziuk G., Kuwert E., Schätzle R.: Evolution of elastic curves in \({\mathbb{R}^{n}}\) , existence and computation. SIAM J. Math. Anal. 33(5), 1228–1245 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eidel’man S.D.: Parabolic equations. In: Egerov, Yu.V., Shubinv, M.A. (eds) Encyclopaedia of mathematical sciences, Scientific Publishers, Berlin, Heidelberg, New York (1994)

    Google Scholar 

  7. Freedman M.H., He Z.X., Wang Z.: Möbius energy of knots and unknots. Ann. Math. (2) 139(1), 1–50 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gonzalez O., Maddocks J.H.: Global curvature, thickness, and the ideal shapes of knots. Proc. Natl. Acad. Sci. USA 96(9), 4769–4773 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hamilton R.S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.) 7(1), 65–222 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hatcher A.E.: A proof of a Smale conjecture, \({{\rm Diff}(S^{3})\simeq {\rm O}(4)}\) . Ann. Math. (2) 117(3), 553–607 (1983)

    Article  MathSciNet  Google Scholar 

  11. He Z.X.: The Euler–Lagrange equation and heat flow for the Möbius energy. Comm. Pure Appl. Math. 53(4), 399–431 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huang, M., Grzeszczuk, R.P., Kauffman, L.H.: Untangling knots by stochastic energy optimization. In: Proceedings of the 7th IEEE visualization conference, IEEE (1996)

  13. Kusner, R.B., Sullivan, J.M.: Möbius-invariant knot energies, Ideal knots, 315–352, Ser. Knots Everything, 19, World Sci. Publ., River Edge, NJ, (1998)

  14. Langer J., Singer D.A.: Knotted elastic curves in \({\mathbb{R}^3}\) . J. Lond. Math. Soc. (2) 30(3), 512–520 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Langer J., Singer D.A.: The total squared curvature of closed curves. J. Differ. Geom. 20(1), 1–22 (1984)

    MATH  MathSciNet  Google Scholar 

  16. Langer J., Singer D.A.: Curve straightening and a minimax argument for closed elastic curves. Topology 24(1), 75–88 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ligocki T.J., Sethian J.A.: Recognizing knots using simulated annealing. J. Knot Theory Ramif. 3(4), 477–495 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lin C.C., Schwetlick H.R.: On the geometric flow of Kirchhoff elastic rods. SIAM J. Appl. Math. 65(2), 720–736 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. O’Hara J.: Energy of a knot. Topology 30(2), 241–247 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. O’Hara J.: Energy functionals of knots. II. Topol. Appl. 56(1), 45–61 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. O’Hara J.: Energy of knots and conformal geometry, Series on Knots and Everything, 33. World Scientific Publishing Co., Inc., River Edge, NJ (2003)

    Book  Google Scholar 

  22. Polden, A.: Curves and surfaces of least total curvature and fourth-order flows. Ph.D. dissertation, Universität Tübingen, Tübingen, Germany (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Chi Lin.

Additional information

Communicated by L. Ambrosio.

The work in this article was partially supported by Taiwan National Science Council Grant 96-2115-M-003-008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CC., Schwetlick, H.R. On a flow to untangle elastic knots. Calc. Var. 39, 621–647 (2010). https://doi.org/10.1007/s00526-010-0328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-010-0328-0

Mathematics Subject Classification (2000)

Navigation