Skip to main content
Log in

Hamiltonian systems of PDEs with selfdual boundary conditions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Selfdual variational calculus is developed further and used to address questions of existence of local and global solutions for various parabolic semi-linear equations, and Hamiltonian systems of PDEs. This allows for the resolution of such equations under general time boundary conditions which include the more traditional ones such as initial value problems, periodic and anti-periodic orbits, but also yield new ones such as “periodic orbits up to an isometry” for evolution equations that may not have periodic solutions. In the process, we introduce a method for perturbing selfdual functionals in order to induce coercivity and compactness, without destroying the selfdual character of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.-P.: Variational principles for differential equations of elliptic, parabolic and hyperbolic type. In: Mathematical techniques of optimization, control and decision, pp. 31–45. Birkhäuser Boston (1981)

  2. Auchmuty G.: Saddle points and existence-uniqueness for evolution equations. Differ. Integral Equ. 6, 1161–1171 (1993)

    MATH  MathSciNet  Google Scholar 

  3. Auchmuty G.: Variational principles for operator equations and initial value problems. Nonlinear Anal. Theory Methods Appl. 12(5), 531–564 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brezis H., Ekeland I.: Un principe variationnel associé à certaines equations paraboliques. Le cas independant du temps. C. R. Acad. Sci. Paris Série. A 282, 971–974 (1976)

    MATH  MathSciNet  Google Scholar 

  5. Brézis H., Ekeland I.: Un principe variationnel associé à certaines equations paraboliques. Le cas dependant du temps. C. R. Acad. Sci. Paris Sér. A 282, 1197–1198 (1976)

    MATH  Google Scholar 

  6. Brezis, H., Nirenberg, L., Stampachia, G.: A remark on Ky Fan’s Minimax Principle, Bollettino U. M. I., pp. 293–300 (1972)

  7. Barbu V.: Abstract periodic Hamiltonian systems. Adv. Differ. Equ. 1(4), 675–688 (1996)

    MATH  MathSciNet  Google Scholar 

  8. Brezis H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North Holland, Amsterdam (1973)

    MATH  Google Scholar 

  9. Browder F.: Nonlinear maximal monotone operators in Banach space. Math. Annalen 175, 89–113 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cazenave, T.: Semilinear Schrdinger equations, Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (2003), 323p

  11. Ekeland, I., Temam, R.: Convex Analysis and Variational problems, Classics in Applied Mathematics, vol. 28, SIAM (1999 Edition)

  12. Ekeland I.: Convexity Methods in Hamiltonian Mechanics. Springer, Berlin (1990)

    MATH  Google Scholar 

  13. Ghoussoub N.: Anti-selfdual Lagrangians: variational resolutions of non self-adjoint equations and dissipative evolutions. AIHP-Anal. Non Linéaire 24, 171–205 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ghoussoub N.: Anti-symmetric Hamiltonians: variational resolution of Navier–Stokes equations and other nonlinear evolutions. Comm. Pure Appl. Math. 60(5), 619–653 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ghoussoub, N.: Selfdual partial differential systems and their variational principles. Springer Monograph in Mathematics. Springer, Berlin (2008), 350p

  16. Ghoussoub N.: A variational theory for monotone vector fields. J. Fixed Point Theory Appl. 4(1), 107–135 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ghoussoub N., Moameni A.: Selfdual variational principles for periodic solutions of Hamiltonian and other dynamical systems. Comm. PDE 32, 771–795 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ghoussoub, N., Moameni, A.: Anti-symmetric Hamiltonians (II): variational resolution for Navier–Stokes equations and other nonlinear evolutions. Ann. I.H.P Analyse non linéaire 26, 223–255 (2009)

    Google Scholar 

  19. Ghoussoub N., Tzou L.: A variational principle for gradient flows. Math. Annalen 30(3), 519–549 (2004)

    Article  MathSciNet  Google Scholar 

  20. Lemaire B.: An asymptotical variational principle associated with the steepest descent method for a convex function. J. Convex Anal. 3(1), 63–70 (1996)

    MATH  MathSciNet  Google Scholar 

  21. Mabrouk M.: A variational approach for a semi-linear parabolic equation with measure data. Ann. Fac. Sci. Toulouse Math. (6) 9(1), 91–112 (2000)

    MATH  MathSciNet  Google Scholar 

  22. Nayroles, B.: Deux théorèmes de minimum pour certains systèmes dissipatifs, C. R. Acad. Sci. Paris Sér. A-B, 282(17):Aiv, A1035–A1038 (1976)

  23. Phelps, R.R.: Convex functions, monotone operators and differentiability. Lecture Notes in Mathematics, vol. 1364. Springer, New York (1998), 2nd edn (1993)

  24. Rios, H.: Étude de la question d’existence pour certains problèmes d’évolution par minimisation d’une fonctionnelle convexe, C. R. Acad. Sci. Paris Sér. A-B, 283(3):Ai, A83–A86 (1976)

  25. Showalter, R.E.: Monotone operators in Banach Space and nonlinear partial differential equations. Math. Surv. Mono. vol. 49. American Mathematical Society, Providence (1997)

  26. Struwe M.: Variational methods and their applications to non-linear partial differential equations and Hamiltonian systems. Springer, Berlin (1990)

    Google Scholar 

  27. Telega J.J.: Extremum principles for nonpotential and initial-value problems. Arch. Mech. (Arch. Mech. Stos.) 54(5–6), 663–690 (2002)

    MATH  MathSciNet  Google Scholar 

  28. Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics. Applied Mathematical Sciences, vol. 68. Springer, Berlin (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassif Ghoussoub.

Additional information

N. Ghoussoub was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada. A. Moameni’s research was supported by a postdoctoral fellowship at the University of British Columbia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghoussoub, N., Moameni, A. Hamiltonian systems of PDEs with selfdual boundary conditions. Calc. Var. 36, 85–118 (2009). https://doi.org/10.1007/s00526-009-0224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-009-0224-7

Mathematics Subject Classification (2000)

Navigation