Skip to main content
Log in

Two-scale convergence of some integral functionals

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Nguetseng’s notion of two-scale convergence is reviewed, and some related properties of integral functionals are derived. The coupling of two-scale convergence with convexity and monotonicity is then investigated, and a two-scale version is provided for compactness by strict convexity. The div-curl lemma of Murat and Tartar is also extended to two-scale convergence, and applications are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire G. (1992). Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal. 23: 1482–1518

    Article  MATH  MathSciNet  Google Scholar 

  2. Allaire G. and Briane M. (1996). Multiscale convergence and reiterated homogenization. Proc. R. Soc. Edinburgh A 126: 297–342

    MATH  MathSciNet  Google Scholar 

  3. Amrani A., Castaing C. and Valadier M. (1992). Méthodes de troncature appliquées á des problèmes de convergence faible ou forte dans L 1. Arch. Ration. Mech. Anal. 117: 167–191

    Article  MATH  MathSciNet  Google Scholar 

  4. Arbogast T., Douglas J. and Hornung U. (1990). Derivation of the double porosity model of single phase flow via homogenization theory. S.I.A.M. J. Math. Anal. 21: 823–836

    Article  MATH  MathSciNet  Google Scholar 

  5. Attouch H. (1984). Variational Convergence for Functions and Operators. Pitman, Boston

    MATH  Google Scholar 

  6. Bakhvalov N. and Panasenko G. (1989). Homogenisation: averaging processes in periodic media. Kluwer, Dordrecht

    MATH  Google Scholar 

  7. Balder E.J. (1986). On weak convergence implying strong convergence in L 1-spaces. Bull. Aus. Math. Soc. 33: 363–368

    MATH  MathSciNet  Google Scholar 

  8. Balder E.J. (1992). On weak convergence implying strong convergence under extremal conditions. J. Math. Anal. Appl. 163: 147–156

    Article  MATH  MathSciNet  Google Scholar 

  9. Ball J.M. (1977). Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ratio. Mech. Anal. 63: 337–403

    Article  MATH  Google Scholar 

  10. Barbu V. (1976). Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden

    MATH  Google Scholar 

  11. Bensoussan G., Lions J.L. and Papanicolaou G. (1978). Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam

    MATH  Google Scholar 

  12. Boccardo L. and Murat F. (1992). Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 19: 581–597

    Article  MATH  MathSciNet  Google Scholar 

  13. Boccardo L., Murat F. and Puel J.-P. (1988). Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl. 152(4): 183–196

    Article  MATH  MathSciNet  Google Scholar 

  14. Bourgeat A., Luckhaus S. and Mikelić A. (1996). Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow. S.I.A.M. J. Math. Anal. 27: 1520–1543

    Article  MATH  Google Scholar 

  15. Braides A. and Defranceschi A. (1998). Homogenization of Multiple Integrals. Oxford University Press, Oxford

    MATH  Google Scholar 

  16. Brezis H. (1973). Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam

    MATH  Google Scholar 

  17. Brezis, H. Convergence in \({\mathcal D'}\) and in L p under strict convexity. In: Baiocchi, C., Lions, J.L., (eds.) Boundary value problems for partial differential equations and applications. pp. 43–52 Masson, Paris (1993)

  18. Briane M. and Casado-Díaz J. (2005). Lack of compactness in two-scale convergence. S.I.A.M. J. Math. Anal. 37: 343–346

    Article  MATH  Google Scholar 

  19. Browder, F.: Nonlinear operators and nonlinear equations of evolution in Banach spaces. In: Proceedings of Symposium Pure Mathematics, vol. XVIII Part II, A.M.S., Providence (1976)

  20. Casado-Díaz J. and Gayte I. (1996). A general compactness result and its application to two-scale convergence of almost periodic functions. C.R. Acad. Sci. Paris, Ser. I 323: 329–334

    MATH  Google Scholar 

  21. Casado-Díaz J. and Gayte I. (2002). A derivation theory for generalized Besicovitch spaces and its application for partial differential equations. Proc. R. Soc. Edinburgh Ser. A 132: 283–315

    MATH  Google Scholar 

  22. Casado-Díaz J., Luna-Laynez M. and Martin J.D. (2001). An adaptation of the multi-scale method for the analysis of very thin reticulated structures. C.R. Acad. Sci. Paris, Ser. I 332: 223–228

    MATH  Google Scholar 

  23. Castaing C. and Valadier M. (1977). Convex Analysis and Measurable Multifunctions. Springer, Berlin

    MATH  Google Scholar 

  24. Cherkaev, A., Kohn, R. (eds.): Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston (1997)

  25. Chiadò Piat V., Dal Maso G. and Defranceschi A. (1990). G-convergence of monotone operators. Ann. Inst. H. Poincaré Anal. Non Linéaire 7: 123–160

    MATH  Google Scholar 

  26. Cioranescu D., Damlamian A. and Griso G. (2002). Periodic unfolding and homogenization. C.R. Acad. Sci. Paris, Ser. I 335: 99–104

    MATH  MathSciNet  Google Scholar 

  27. Cioranescu D. and Donato P. (1999). An Introduction to Homogenization. Oxford University Press, New York

    MATH  Google Scholar 

  28. Dacorogna B. (1989). Direct Methods in the Calculus of Variations. Springer, Berlin

    MATH  Google Scholar 

  29. Dal Maso G. (1993). An Introduction to \({\Gamma}\) -Convergence Birkhäuser, Boston

    Google Scholar 

  30. Ekeland I. and Temam R. (1974). Analyse Convexe et Problèmes Variationnelles. Dunod Gauthier-Villars, Paris

    Google Scholar 

  31. Francfort G., Murat F. and Tatar L. (2004). Monotone operators in divergence form with x-dependent multivalued graphs. Boll. Unione Mat. Ital. B 7: 23–59

    MathSciNet  MATH  Google Scholar 

  32. Germain P. (1973). Cours de Mécanique des Milieux Continus. Tome I: Th讲ie g诩rale. Masson et Cie, Paris

    Google Scholar 

  33. Hiriart-Urruty J.-B. and Lemarechal C. (1993). Convex Analysis and Optimization Algorithms. Springer, Berlin

    Google Scholar 

  34. Ioffe A.D. and Tihomirov V.M. (1979). Theory of Extremal Problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  35. Jikov V.V., Kozlov S.M. and Oleinik O.A. (1994). Homogenization of Differential Operators and Integral Functionals. Springer, Berlin

    Google Scholar 

  36. Lenczner M. (1997). Homogénéisation d’un circuit électrique. C.R. Acad. Sci. Paris, Ser. II 324: 537–542

    MATH  Google Scholar 

  37. Lions J.L. (1969). Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris

    MATH  Google Scholar 

  38. Milton G.W. (2002). The Theory of Composites. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  39. Minty G.J. (1962). Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29: 341–346

    Article  MATH  MathSciNet  Google Scholar 

  40. Murat F. (1978). Compacité par compensation. Ann. Scuola Norm. Sup. Pisa 5: 489–507

    MATH  MathSciNet  Google Scholar 

  41. Murat F. (1981). Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8: 69–102

    MATH  MathSciNet  Google Scholar 

  42. Murat, F.: A survey on compensated compactness. In: Contributions to modern calculus of variations (Bologna, 1985). pp. 145–183 Longman Sci. Tech., Harlow (1987)

  43. Murat, F., Tartar, L.: H-convergence. In [24], pp. 21–44

  44. Nguetseng G. (1989). A general convergence result for a functional related to the theory of homogenization. S.I.A.M. J. Math. Anal. 20: 608–623

    Article  MATH  MathSciNet  Google Scholar 

  45. Nguetseng G. (2003). Homogenization structures and applications. I. Zeit. Anal. Anwend. 22: 73–107

    MATH  MathSciNet  Google Scholar 

  46. Nguetseng G. (2004). Homogenization structures and applications. II. Z. Anal. Anwendungen 23: 483–508

    Article  MathSciNet  MATH  Google Scholar 

  47. Rzeżuchowski T. (1992). Impact of dentability on weak convergence in L 1. Boll. Un. Mat. Ital. A 7: 71–80

    Google Scholar 

  48. Rockafellar R.T. (1968). Integrals which are convex functionals. Pacific J. Math. 24: 525–539

    MATH  MathSciNet  Google Scholar 

  49. Rockafellar R.T. (1969). Convex Analysis. Princeton University Press, Princeton

    Google Scholar 

  50. Sanchez-Palencia E. (1980). Non-Homogeneous Media and Vibration Theory. Springer, New York

    MATH  Google Scholar 

  51. Tartar, L.: Course Peccot. Collège de France, Paris 1977. (Unpublished, partially written in [43]

  52. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Knops, R.J. (ed.) Nonlinear Analysis and Mechanics: Heriott-Watt Symposium, vol. IV pp. 136–212 Pitman, London (1979)

  53. Tartar L. (2002). Mathematical tools for studying oscillations and concentrations: from Young measures to H-measures and their variants. In: Antonić, N., Jäger, W. and Mikelić, A. (eds) Multiscale Problems in Science and Technology, pp 1–84. Springer, Berlin

    Google Scholar 

  54. Valadier M. (1990). Young measures. In: Cellina, A. (eds) Methods of Nonconvex Analysis, pp 152–188. Springer, Berlin

    Chapter  Google Scholar 

  55. Valadier M. (1994). Young measures, weak and strong convergence and the Visintin-Balder theorem. Set-Valued Anal 2: 357–367

    Article  MATH  MathSciNet  Google Scholar 

  56. Visintin A. (1984). Strong convergence results related to strict convexity. Comm. in P.D.E.s 9: 439–466

    MATH  MathSciNet  Google Scholar 

  57. Visintin A. (2004). Some properties of two-scale convergence. Rend. Acc. Naz. Lincei XV: 93(-107): 93–107

    MathSciNet  Google Scholar 

  58. Visintin A. (2006). Towards a two-scale calculus. E.S.A.I.M. Control Optim. Calc. Var. 12: 371–397

    Article  MATH  MathSciNet  Google Scholar 

  59. Visintin, A.: Two-scale convergence of first-order operators. Z. Anal. Anwendungen (in press)

  60. Visintin A. (2006). Homogenization of doubly-nonlinear equations. Rend. Lincei Mat. Appl. 17: 211–222

    MathSciNet  MATH  Google Scholar 

  61. Visintin, A.: Electromagnetic processes in doubly-nonlinear composites (in preparation)

  62. Visintin, A.: Homogenization of a doubly-nonlinear Stefan-type problem (in preparation)

  63. Visintin, A.: Two-scale div-curl lemma (submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Visintin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visintin, A. Two-scale convergence of some integral functionals. Calc. Var. 29, 239–265 (2007). https://doi.org/10.1007/s00526-006-0068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-006-0068-3

Mathematics Subject Classification (2000)

Navigation