Skip to main content
Log in

Bubbling solutions for an anisotropic Emden–Fowler equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the following anisotropic Emden–Fowler equation \(\nabla (a(x) \nabla u)+ \epsilon^{2} a(x) e^{u} = 0 \quad in \quad \Omega, \quad u=0 \quad on \quad \partial \Omega,\) where \(\Omega \subset \mathbb{R}^2\) is a bounded smooth domain and a(x) is a positive smooth function. We investigate the effect of anisotropic coefficient a(x) on the existence of bubbling solutions. We show that at given local maximum points of a(x), there exists arbitrarily many bubbles. As a consequence, the quantity \(\mathcal{T}_\epsilon = \epsilon^{2} \int_{\Omega} a(x)e^{u} {\rm d}x \) can approach to \( + \infty\) as \(\epsilon \to 0\). These results show a striking difference with the isotropic case [\(a(x) \equiv \) Constant].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin T. (1982) Nonlinear Analysis on Manifolds. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  2. Baraket S., Pacard F. (1998) Construction of singular limits for a semilinear elliptic equation in dimension 2. Calc. Var. Partial Differ. Equ. 6(1): 1–38

    Article  MATH  MathSciNet  Google Scholar 

  3. Bartolucci D., Orsina L. (2005) Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Commun. Pure Appl. Anal. 4(3): 499–522

    Article  MATH  MathSciNet  Google Scholar 

  4. Bates P., Dancer E.N., Shi J. (1999) Multi-spike stationary solutions of the Cahn–Hilliard equation in higher-dimension and instability. Adv. Differ. Equ. 4, 1–69

    MATH  MathSciNet  Google Scholar 

  5. Brezis H., Merle F. (1991) Uniform estimates and blow-up behavior for solutions of  −Δu  =  V(x)e u in two dimensions. Commun. Partial Differ. Equ. 16(8–9): 1223–1253

  6. Chanilo S., Li Y.Y. (1992) Continuity of solutions of uniformly elliptic equations in \(\mathbb{R}^2\). Manuscr. Math. 77, 415–433

    Google Scholar 

  7. Chen C.C., Lin C.S. (2002) Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces. Commun. Pure Appl. Math. 55(6): 728–771

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen X. (1999) Remarks on the existence of branch bubbles on the blowup-analysis of equation  −Δu  =  e 2u in dimesnion two. Commun. Anal. Geom. 7, 295–302

    MATH  Google Scholar 

  9. Dancer E.N., Yan S. (1999) Multipeak solutions for a singular perturbed Neumann problem. Pac. J. Math. 189, 241–262

    Article  MATH  MathSciNet  Google Scholar 

  10. Del Pino M., Felmer P. (1997) Semiclassical states for nonlinear Schrodinger equations. J. Funct. Anal. 149, 245–265

    Article  MATH  MathSciNet  Google Scholar 

  11. Del Pino M., Felmer P., Musso M. (2003) Two-bubble solutions in the super-critical Bahri–Coron’s problem. Calc. Var. Partial Differ. Equ. 16, 113–145

    Article  MATH  MathSciNet  Google Scholar 

  12. Del Pino M., Kowalczyk M., Musso M. (2005) Singular limits in Liouville-type equations. Calc. Var. Partial Differ. Equ. 24, 47–81

    Article  MATH  MathSciNet  Google Scholar 

  13. Esposito P., Grossi M., Pistoia A. (2005) On the existence of blowing-up solutions for a mean field equation. Ann. Inst. H. Poincaré Anal. Nonlinéaire 22, 227–257

    Article  MATH  MathSciNet  Google Scholar 

  14. Gelfand I.M. (1963) Some problems in the theory of quasilinear equations. Am. Math. Soc. Transl. 29, 295–381

    Google Scholar 

  15. Gui C., Wei J. (1999) Multiple interior spike solutions for some singular perturbed Neumann problems. J. Differ. Equ. 158, 1–27

    Article  MATH  MathSciNet  Google Scholar 

  16. Gui C., Wei J. (2000) On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems. Can. J. Math. 52, 522–538

    MATH  MathSciNet  Google Scholar 

  17. Gui C., Wei J., Winter M. (2000) Multiple boundary peak solutions for some singularly perturbed Neumann problems. Ann. Inst. H. Poincaré Anal. Nonlinéaire 17, 249–289

    MathSciNet  Google Scholar 

  18. Joseph D.D., Lundgren T.S. (1973) Quasilinear problems driven by positive sources. Arch. Ration. Mech. Anal. 49, 241–269

    MATH  MathSciNet  Google Scholar 

  19. Li Y.Y. (1999) Harnack type inequality: the method of moving planes. Commun. Math. Phys. 200, 421–444

    Article  MATH  Google Scholar 

  20. Li Y.Y., Shafrir I. (1994) Blow-up analysis for solutions of  −Δu  =  Ve u in dimension two. Indiana Univ. Math. J. 43(4): 1255–1270

    Article  MATH  MathSciNet  Google Scholar 

  21. Ma L., Wei J. (2001) Convergence for a Liouville equation. Commun. Math. Helv. 76, 506–514

    Article  MATH  MathSciNet  Google Scholar 

  22. Mignot F., Murat F., Puel J.P. (1979) Variation d’un point retourment par rapport au domaine. Commun. Partial Differ. Equ. 4, 1263–1297

    MATH  MathSciNet  Google Scholar 

  23. Mizoguchi N., Suzuki T. (1997) Equations of gas combustion: S-shaped bifurcation and mushrooms. J. Differ. Equ. 134, 183–215

    Article  MATH  MathSciNet  Google Scholar 

  24. Nagasaki K., Suzuki T. (1990) Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities. Asymptot. Anal. 3, 173–188

    MATH  MathSciNet  Google Scholar 

  25. Rey O., Wei J. (2004) Blow-up solutions for an elliptic Neumann problem with sub-or-supcritical nonlinearity, I: N = 3. J. Funct. Anal. 212(2): 472–499

    Article  MATH  MathSciNet  Google Scholar 

  26. Wei, J., Ye, D., Zhou, F. Boundary blow-up solution for an anisotropic Emden–Fowler equation, preprint (2006)

  27. Ye D. (1997) Une remarque sur le comportement asymptotique des solutions de \(-\Delta u = \lambda f(u)\). C. R. Acad. Sci. Paris 325, 1279–1282

    MATH  Google Scholar 

  28. Ye D., Zhou F. (2001) A generalized two dimensional Emden–Fowler equation with exponential nonlinearity. Calc. Var. Partial Differ. Eq. 13, 141–158

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juncheng Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Ye, D. & Zhou, F. Bubbling solutions for an anisotropic Emden–Fowler equation. Calc. Var. 28, 217–247 (2007). https://doi.org/10.1007/s00526-006-0044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-006-0044-y

Keywords

Navigation