Skip to main content
Log in

Higher-order energy expansions and spike locations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract.

We consider the following singularly perturbed semilinear elliptic problem: \((I) \left\{ \begin{array}{l} \epsilon^{2} \Delta u - u + f(u)=0 \ \ \mbox{in} \ \Omega, \\ \displaystyle u>0 \ \ \mbox{in} \ \ \Omega \ \ \mbox{and} \ \frac{\partial u}{\partial \nu} =0 \ \mbox{on} \ \partial \Omega, \end{array} \right. \) where \(\Omega \) is a bounded domain in R N with smooth boundary \(\partial \Omega\), \(\epsilon > 0\) is a small constant and f is some superlinear but subcritical nonlinearity. Associated with (I) is the energy functional \(J_\epsilon\) defined by \(J_\epsilon [u]: = \int_\Omega \left(\frac{\epsilon^2}{2} |\nabla u|^2 + \frac{1}{2} u^2- F(u)\right) dx \ \ \ \ \ \mbox{for} \ u \in H^1 (\Omega),\) where \( F(u) = \int_0^u f(s)ds\). Ni and Takagi ([29, 30]) proved that for a single boundary spike solution \( u_\epsilon\), the following asymptotic expansion holds: \(J_\epsilon [u_\epsilon] = \epsilon^{N} \Bigg[ \frac{1}{2} I[w] -c_1 \epsilon H(P_\epsilon) + o(\epsilon)\Bigg], \) where c 1 > 0 is a generic constant, \( P_\epsilon\) is the unique local maximum point of \( u_\epsilon\) and \(H(P_\epsilon)\) is the boundary mean curvature function at \(P_\epsilon \in \partial \Omega\). In this paper, we obtain a higher-order expansion of \( J_\epsilon [u_\epsilon]: \) \(J_\epsilon [u_\epsilon] = \epsilon^{N} \Bigg[ \frac{1}{2} I[w] -c_1 \epsilon H(P_\epsilon) + \epsilon^2 [c_2 (H(P_\epsilon))^2 + c_3 R (P_\epsilon)]+ o(\epsilon^2)\Bigg]\;, \) where c 2, c 3 are generic constants and \( R(P_\epsilon)\) is the scalar curvature at \( P_\epsilon\). In particular c 3 > 0. Some applications of this expansion are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, Mancinni, G., Yadava, S.L.: The role of mean curvature in a semilinear Neumann problem involving the critical Sobolev exponent. Comm. P.D.E. 20, 591-631 (1995)

    MathSciNet  Google Scholar 

  2. Adimurthi, Pacella, F., Yadava, S.L.: Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity. J. Funct. Anal. 113, 318-350 (1993)

    Article  MathSciNet  Google Scholar 

  3. Adimurthi, Pacella, F., Yadava, S.L.: Characterization of concentration points and \(L^{\infty}\)-estimates for solutions involving the critical Sobolev exponent. Diff. Int. Eqn. 8, 41-68 (1995)

    Google Scholar 

  4. Alikakos, N., Kowalczyk, M.: Critical points of a singular perturbation problem via reduced energy and local linking. J. Differential Equations 159, 403-426 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bates, P., Dancer, E.N., Shi, J.: Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability. Adv. Differential Equations 4, 1-69 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Bates, P., Fusco, G.: Equilibria with many nuclei for the Cahn-Hilliard equation. J. Differential Equations 4, 1-69 (1999)

    MATH  Google Scholar 

  7. Bates, P., Shi, J.: Existence and instability of spike layer solutions to singular perturbation problems. J. Funct. Anal. 196, 211-264 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, C.C., Lin, C.S.: Uniqueness of the ground state solution of \(\Delta u + f(u) =0 \) in \(R^N, N\geq 3\). Comm. Partial Differential Equations 16, 1549-1572 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Cerami, G., Wei, J.: Multiplicity of multiple interior spike solutions for some singularly perturbed Neumann problem. International Math. Research Notes 12, 601-626 (1998)

    Article  MATH  Google Scholar 

  10. Dancer, E.N., Wei, J.: On the effect of domain topology in some singular perturbation problems. Topological Methods in Nonlinear Analysis 11, 227-248 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Dancer, E.N., Yan, S.: Multipeak solutions for a singular perturbed Neumann problem. Pacific J. Math. 189, 241-262 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Dancer E.N. Yan, S.: Interior and boundary peak solutions for a mixed boundary value problem. Indiana Univ. Math. J. 48, 1177-1212 (1999)

    MathSciNet  MATH  Google Scholar 

  13. del Pino, M., Felmer, P.: Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting. Indiana Univ. Math. J. 48, 883-898 (1999)

    MATH  Google Scholar 

  14. del Pino, M., Felmer, P., Wei, J.: On the role of mean curvature in some singularly perturbed Neumann problems. SIAM J. Math. Anal. 31, 63-79 (1999)

    Article  MATH  Google Scholar 

  15. del Pino, M., Felmer, P., Wei, J.: On the role of distance function in some singularly perturbed problems. Comm. Partial Differential Equations 25, 155-177 (2000)

    MATH  Google Scholar 

  16. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik (Berlin) 12, 30-39 (1972)

    Google Scholar 

  17. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in R N. In: Nachbin, L. (ed.) Mathematical Analysis and Applications, Part A, pp. 369-402. Adv. Math. Suppl. Stud. 7, Academic Press, New York 1981

  18. Grossi, M., Pistoia, A., Wei, J.: Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory. Cal. Var. Partial Differential Equations 11, 143-175 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Gui, C.: Multipeak solutions for a semilinear Neumann problem. Duke Math. J. 84, 739-769 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Gui, C., Wei, J.: Multiple interior peak solutions for some singular perturbation problems. J. Differential Equations 158, 1-27 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Gui, C., Wei, J.: On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems. Can. J. Math. 52, 522-538 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Gui, C., Wei, J., Winter, M.: Multiple boundary peak solutions for some singularly perturbed Neumann problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 17, 47-82 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kang, X., Wei, J.: On interacting bumps of semiclassical states of nonlinear Schrödinger equations. Adv. Diff. Eqns. 5, 899-928 (2000)

    MATH  Google Scholar 

  24. Kowalczyk, M.: Multiple spike layers in the shadow Gierer-Meinhardt system: existence of equilibria and approximate invariant manifold. Duke Math. J. 98, 59-111 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Kwong, M.K.: Uniquness of positive solutions of \(\Delta u-u + u^p=0\) in R N. Arch. Rational Mech. Anal. 105, 243-266 (1991)

    MATH  Google Scholar 

  26. Li, Y.-Y.: On a singularly perturbed equation with Neumann boundary condition. Comm. Partial Differential Equations 23, 487-545 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Li, Y.-Y., Nirenberg, L.: The Dirichlet problem for singularly perturbed elliptic equations. Comm. Pure Appl. Math. 51, 1445-1490 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lin, C.-S., Ni, W.-M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis systems. J. Differential Equations 72, 1-27 (1988)

    MathSciNet  Google Scholar 

  29. Ni, W.-M., Takagi, I.: On the shape of least energy solution to a semilinear Neumann problem. Comm. Pure Appl. Math. 41, 819-851 (1991)

    MathSciNet  Google Scholar 

  30. Ni, W.-M., Takagi, I.: Locating the peaks of least energy solutions to a semilinear Neumann problem. Duke Math. J. 70, 247-281 (1993)

    MathSciNet  MATH  Google Scholar 

  31. Ni, W.-M., Takagi, I.: Point-condensation generated by a reaction-diffusion system in axially symmetric domains. Japan J. Industrial Appl. Math. 12, 327-365 (1995)

    MathSciNet  MATH  Google Scholar 

  32. Ni, W.-M., Takagi, I., Wei, J.: On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems: intermediate solutions. Duke Math. J. 94, 597-618 (1998)

    MathSciNet  MATH  Google Scholar 

  33. Ni, W.-M., Wei, J.: On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems. Comm. Pure Appl. Math. 48, 731-768 (1995)

    MathSciNet  MATH  Google Scholar 

  34. Ni, W.-M.: Diffusion, cross-diffusion, and their spike-layer steady states. Notices Amer. Math. Soc. 45, 9-18 (1998)

    MathSciNet  MATH  Google Scholar 

  35. Peletier, L.A., Serrin, J.: Uniqueness of positive solutions of semilinear equations in R N. Arch. Rational Mech. Anal. 81, 181-197 (1983)

    MathSciNet  MATH  Google Scholar 

  36. Wei, J.: On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem. J. Differential Equations 129, 315-333 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wei, J.: On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem. J. Diffential Equations 134, 104-133 (1997)

    Article  MATH  Google Scholar 

  38. Wei, J.: On the interior spike layer solutions for some singular perturbation problems. Proc. Royal Soc. Edinburgh Sect. A 128, 849-874 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Wei, J.: Uniqueness and eigenvalue estimates of boundary spike solutions. Proc. R. Soc. Edinburgh Sect. A 131, 1457-1480 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Wei, J.: Point-condensation generated by the Gierer-Meinhardt system: a brief survey. In: Morita, Y., Ninomiya, H., Yanagida, E., Yotsutani, S. (eds.) New Trend In Partial Differential Equations 2000, pp. 46-59

  41. Wei, J., Winter, M.: Stationary solutions for the Cahn-Hilliard equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 459-492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wei, J., Winter, M.: Multiple boundary spike solutions for a wide class of singular perturbation problems. J. London Math. Soc. 59, 585-606 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wei, J., Winter, M.: Higher order energy expansions for some singularly perturbed Neumann problems. C.R. Acad. Sci. Paris, Ser. I, 337, 37-42 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juncheng Wei.

Additional information

Received: 14 January 2003, Accepted: 28 July 2003, Published online: 15 October 2003

Mathematics Subject Classification (2000):

Primary 35B40, 35B45; Secondary 35J25

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Winter, M. Higher-order energy expansions and spike locations. Cal Var 20, 403–430 (2004). https://doi.org/10.1007/s00526-003-0240-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-003-0240-y

Keywords

Navigation