Skip to main content
Log in

Prognosis prediction of high grade serous adenocarcinoma based on multi-modal convolution neural network

  • S.I.: Neural Networks and Machine Learning Empowered Methods and Applications in Healthcare
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The prognostic analysis for high grade serous adenocarcinoma (HGSC) holds significant clinical importance. However, current prognostic analysis primarily relies on statistical techniques like logistic regression and chi-square analysis alongside traditional machine learning methods based on pattern recognition. These approaches face challenges in addressing the limited reliability and validity of evaluation results, as well as the absence of reliable prognostic indicators. To identify a reliable prognostic evaluation method for high grade serous adenocarcinoma, a novel prognostic evaluation method was constructed using multi-modal deep learning techniques and compared with existing methods using data from 210 patients with high grade serous adenocarcinoma (stage III). The experimental results showed that the accuracy of this method for prognostic analysis was 80.0%, and the detection rate for poor prognosis cases was 82.87%, which was superior to current methods. Our proposed method could also automatically extract key features from different datasets and efficiently predict patient outcomes. Overall, this study laid the groundwork to overcome the difficulties in the prognostic evaluation of HGSC, help clinicians better understand the pathogenesis, and improve the long-term survival rates of this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

All data supporting this study is available upon request by contact with the first author and corresponding authors.

References

  1. Webb PM, Jordan SJ et al (2017) Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol 41:3–14. https://doi.org/10.1016/j.bpobgyn.2016.08.006

    Article  Google Scholar 

  2. Morand S, Devanaboyina M, Staats H, Stanbery L, Nemunaitis J et al (2021) Ovarian cancer immunotherapy and personalized medicine. Int J Mol Sci 22(12):6532. https://doi.org/10.3390/ijms22126532

  3. Brett MR, Jennifer BP, Thomas AS et al (2017) Epidemiology of ovarian cancer: a review. Cancer Biol Med 14(1):9–32. https://doi.org/10.20892/j.issn.2095-3941.2016.0084

  4. Kossai ML et al (2018) Ovarian cancer: a heterogeneous disease. Pathobiology 85(1–2):41–49. https://doi.org/10.1159/000479006

    Article  Google Scholar 

  5. Hosseini H, Monsefi R, Shadroo S et al (2022) Deep learning applications for lung cancer diagnosis: a systematic review. Electrical Eng Syst Sci 2022(01):1–32. https://doi.org/10.48550/arXiv.2201.00227

  6. Monteiro A, Frana RP, Arthur R et al (2022) An artificial intelligent cognitive approach for classification and recognition of white blood cells employing deep learning for medical applications. Deep Learn Med Appl Unique Data 2022:53–69. https://doi.org/10.1016/b978-0-12-824145-5.00012-5

    Article  Google Scholar 

  7. Zhang X, Wang S, Rudzinski ER et al (2022) Deep Learning of rhabdomyosarcoma pathology images for classification and survival outcome prediction. Am J Pathol Official Publ Am Assoc Pathol 192(6):917–925. https://doi.org/10.1016/j.ajpath.2022.03.011

    Article  Google Scholar 

  8. Chen SB, Novoa RA (2022) Artificial intelligence for dermatopathology: current trends and the road ahead. Semin Diagn Pathol 39(4):298–304. https://doi.org/10.1053/j.semdp.2022.01.003

    Article  Google Scholar 

  9. Liao X, Sun L, Yang K et al (2017) Prognostic evaluation method of ovarian granulosa cell tumor based on semi-supervised collaborative intelligence model. J Eng Sci Technol Rev 10(6):96–103. https://doi.org/10.25103/jestr.106.13

  10. Liao X, Sun L, Yang K et al (2018) Prognosis evaluation of ovarian granulosa cell tumor based on co-forest intelligence model. J Eng Sci Technol Rev 11(2):135–142. https://doi.org/10.25103/jestr.112.19

  11. Au KK, Josahkian JA, Francis JA, Squire JA, Koti M (2015) Current state of biomarkers in ovarian cancer prognosis. Future Oncol 11(23):3187–3195. https://doi.org/10.2217/fon.15.251

    Article  Google Scholar 

  12. Mysona D et al (2019) A combined score of clinical factors and serum proteins can predict time to recurrence in high grade serous ovarian cancer. Gynecol Oncol 152(3):574–580. https://doi.org/10.1016/j.ygyno.2018.12.015

    Article  Google Scholar 

  13. Clarke CL, Kushi LH, Chubak J et al (2019) Predictors of long-term survival among high-grade serous ovarian cancer patients. Cancer Epidemiol Biomarkers Prev 28(5):996–999. https://doi.org/10.1158/1055-9965.EPI-18-1324

    Article  Google Scholar 

  14. Lisio MA, Fu L, Goyeneche A, Gao ZH, Telleria C et al (2019) High-grade serous ovarian cancer: basic sciences, clinical and therapeutic standpoints. Int J Mol Sci 20(4):952. https://doi.org/10.3390/ijms20040952

    Article  Google Scholar 

  15. Casey L, Singh N (2019) Ovarian high-grade serous carcinoma: assessing pathology for site of origin, staging and post-neoadjuvant chemotherapy changes. Surg Pathol Clin 12(2):515–528. https://doi.org/10.1016/j.path.2019.01.007

    Article  Google Scholar 

  16. Zeng H, Chen L, Zhang M, Luo Y, Ma X (2021) Integration of histopathological images and multi-dimensional omics analyses predicts molecular features and prognosis in high-grade serous ovarian cancer. Gynecol Oncol 163(1):171–180. https://doi.org/10.1016/j.ygyno.2021.07.015

    Article  Google Scholar 

  17. Azzalini E, Barbazza R, Stanta G et al (2021) Histological patterns and intra-tumor heterogeneity as prognostication tools in high grade serous ovarian cancers. Gynecol Oncol 163(3):498–505. https://doi.org/10.1016/j.ygyno.2021.09.012

    Article  Google Scholar 

  18. Yang B, Li X, Zhang W et al (2022) Spatial heterogeneity of infiltrating T cells in high-grade serous ovarian cancer revealed by multi-omics analysis. Cell Rep Med 3(12):100856. https://doi.org/10.1016/j.xcrm.2022.100856

    Article  Google Scholar 

  19. Gayathri M, Malathy C (2022) A deep learning framework for intrusion detection and multimodal biometric image authentication. J Mobile Multimedia 18(2): 393–419. https://doi.org/10.13052/jmm1550-4646.18212

  20. Shen K, Shi Q, Wang H et al (2021) Multimodal visibility deep learning model based on visible-infrared image pair. J Comp-Aided Des Comp Graph 33(6):939–946. https://doi.org/10.3724/SP.J.1089.2021.18420

    Article  Google Scholar 

  21. Liu T, Huang J, Liao T et al (2021) A hybrid deep learning model for predicting molecular subtypes of human breast cancer using multimodal data. Innov Res Biomed Eng IRBM 2022(1):62–74. https://doi.org/10.1016/j.irbm.2020.12.002

    Article  Google Scholar 

  22. Puyol-Antón E, Sidhu BS, Gould J et al (2022) A multimodal deep learning model for cardiac resynchronisation therapy response prediction. Med Image Anal 79:102465. https://doi.org/10.1016/j.media.2022.102465

    Article  Google Scholar 

  23. Wang P, Zheng S, Jiang Y et al (2022) Structure-aware multimodal deep learning for drug-protein interaction prediction. J Chem Inf Model 62(5):1308–1317. https://doi.org/10.1021/acs.jcim.2c00060

    Article  Google Scholar 

  24. Alattas K, Alkaabi A, Alsaud AB (2021) An overview of artificial general intelligence: recent developments and future challenges. J Comput Sci 17(4):364–370. https://doi.org/10.3844/jcssp.2021.364.370

    Article  Google Scholar 

  25. Williams AE (2021) Approximating an artificial general intelligence or a general collective intelligence. Int J Collaborative Intell 2(3):210–223. https://doi.org/10.31730/osf.io/zsbfe

  26. Mikki S (2023) Artificial general intelligence and noncomputability: a dynamical framework. J Artif Intell Conscious 10(01):71–101. https://doi.org/10.1142/S2705078522500163

    Article  Google Scholar 

  27. Hygino da Cruz LC, Rodriguez I et al (2011) Pseudoprogression and pseudoresponse: imaging challen**ges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol 32(11):1978–1985. https://doi.org/10.3174/ajnr.A2397

    Article  Google Scholar 

  28. Guo Y, Zheng Z, Mao S et al (2023) Metabolic-associated signature and hub genes associated with immune microenvironment and prognosis in bladder cancer. Mol Carcinog 62(2):185–199. https://doi.org/10.1002/mc.23475

    Article  Google Scholar 

  29. Bera K, Schalper KA, Rimm DL et al (2019) Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology. Nat Rev Clin Oncol 16(11):703–715. https://doi.org/10.1038/s41571-019-0252-y

    Article  Google Scholar 

  30. Wan T et al (2016) A radio-genomics approach for identifying high risk estrogen receptor-positive breast cancers on DCE-MRI: preliminary results in predicting OncotypeDX risk scores. Sci Rep 6(1):21394. https://doi.org/10.1038/srep21394

    Article  MathSciNet  Google Scholar 

  31. McKinney SM, Sieniek M et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577(7788):89–94. https://doi.org/10.1038/s41586-019-1799-6

    Article  Google Scholar 

  32. Lao J et al (2017) A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 7(1):10353. https://doi.org/10.1038/s41598-017-10649-8

    Article  Google Scholar 

  33. Wang L, Cao Hongrui Fu, Yang, (2022) A bearing prognosis framework based on deep wavelet extreme learning machine and particle filtering. Appl Soft Comput 131(1):109763. https://doi.org/10.1016/j.asoc.2022.109763

    Article  Google Scholar 

  34. Bera K, Schalper KA, Rimm DL et al (2019) Artificial intelligence in digital pathology-new tools for diagnosis and precision oncology. Nat Rev Clin Onco 16:703–715. https://doi.org/10.1038/s41571-019-0252-y

    Article  Google Scholar 

  35. Chang K, Beers AL, Bai H et al (2019). Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement: Neuro-oncology 21(11):1412–1422. https://doi.org/10.1093/neuonc/noz106.

  36. da Silva Martins B, Junior RSR, Pimenta TM, de Souza JC, Rangel LBA (2022) The role of inflammasomes in ovarian cancer. In: Lele S (ed) Ovarian cancer [Internet]. Brisbane (AU): Exon Publications, 4. https://doi.org/10.36255/exon-publications-ovarian-cancer-inflammasomes

  37. Chen H, Molberg K, Strickland AL et al (2020) PD-L1 Expression and CD8+ tumor-infiltrating lymphocytes in different types of tubo-ovarian carcinoma and their prognostic value in high-grade serous carcinoma. Am J Surg Pathol 44(8):1050–1060. https://doi.org/10.1097/PAS.0000000000001503

    Article  Google Scholar 

  38. Koletsi D, Pandis N (2017) Survival analysis, part 2: Kaplan-Meier method and the log-rank test. Am J Orthod Dentofac Orthop 152(4):569–571. https://doi.org/10.1016/j.ajodo.2017.07.008

    Article  Google Scholar 

  39. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. IEEE CVPR 2016:770–778. https://doi.org/10.1109/CVPR.2016.90

    Article  Google Scholar 

  40. Tan, Mingxing and Quoc V. Le. (2019) EfficientNet: rethinking model scaling for convolutional neural networks. In: 36th International conference on machine learning: ICML 2019: 9–15. https://doi.org/10.48550/arXiv.1905.11946

  41. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention 9351:234–241. https://doi.org/10.1007/978-3-319-24574-4_28

  42. Zhou Z-H, Li M (2007) Semisupervised regression with cotraining-style algorithms. IEEE Trans Knowl Data Eng 19(11):1479–1493. https://doi.org/10.1109/TKDE.2007.190644

    Article  Google Scholar 

  43. Zhou ZH, Li M (2005) Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans Knowl Data Eng 17(11):1529–1541. https://doi.org/10.1109/TKDE.2005.186

    Article  Google Scholar 

  44. Arya N , Saha S (2021) Multi-modal advanced deep learning architectures for breast cancer survival prediction. Knowledge-Based Syst 221:106965.1–106965.11. https://doi.org/10.1016/j.knosys.2021.106965.

  45. Yu KH, Zhang C, Berry GJ, Altman RB, Ré C et al (2016) Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun 7:12474. https://doi.org/10.1038/ncomms12474

    Article  Google Scholar 

  46. Zeng H, Chen L et al (2021) Integration of histopathological images and multi-dimensional omics analyses predicts molecular features and prognosis in high-grade serous ovarian cancer. Gynecol Oncol 163(1):171–180. https://doi.org/10.1016/j.ygyno.2021.07.015

    Article  Google Scholar 

Download references

Funding

This research was supported by National Key Research and Development Program of China (2020YFB1711500), the 1·3·5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYYC21004), the DICOM Standard National and Local Collaborated Engineering Laboratory Open Foundation (No. KFKT20220001), Provincial College Student Innovation and Entrepreneurship Training Program Project (S202310644063), and the Multi-dimensional Data Sensing and Intelligent Information Processing Key Laboratory Open Foundation (No. DWSJ2204).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Methodology, material preparation, data collection and analysis were performed by XL & KL & XZ. The first draft of the manuscript was written by XL, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Kang Li or Xin Zheng.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, X., Li, L., Gan, Z. et al. Prognosis prediction of high grade serous adenocarcinoma based on multi-modal convolution neural network. Neural Comput & Applic 36, 9805–9817 (2024). https://doi.org/10.1007/s00521-023-09231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-09231-3

Keywords

Navigation