Skip to main content
Log in

Multi-spatial information joint guidance evolutionary algorithm for dynamic multi-objective optimization with a changing number of objectives

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Existing research on dynamic multi-objective optimization problems involving changes in the number of objectives has received little attention, but it is widespread in practical applications. This problem would cause the expansion or contraction of the manifold in the objective space. If it is accompanied by changes in Pareto set/front (PS/PF), the problem becomes more complex. However, several dynamic response techniques have been developed to handling this kind of dynamics. Faced with these issues, a multi-spatial information joint guidance evolutionary algorithm is proposed. To more accurately identify the optimal solutions after the change, a space adaptive transfer strategy is introduced, which adopts the geodesic flow kernel method to extract spatial information at different times. Afterwards it adaptively transfers the space via different changes to generate new individuals. In order to improve the diversity after the change, a dual space multi-dimensional joint sampling strategy is proposed. It fully combines the individual information in the objective and the decision space. Then the promising solutions are sampled in multiple dimensions near the representative individuals. Comprehensive experiments are conducted on 15 benchmark functions with a varying number of objectives and PS/PF. Simulation results verify the capability of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Azzouz R, Bechikh S, Said LB (2017) A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy. Soft Comput 21:885–906. https://doi.org/10.1007/s00500-015-1820-4

    Article  Google Scholar 

  2. Cao L, Xu L, Goodman ED et al (2019) Decomposition-based evolutionary dynamic multiobjective optimization using a difference model. Appl Soft Comput J 76:473–490. https://doi.org/10.1016/j.asoc.2018.12.031

    Article  Google Scholar 

  3. Chen R, Li K, Yao X (2018) Dynamic multi-objectives optimization with a changing number of objectives. IEEE Trans Evol Comput 22(1):157–171. https://doi.org/10.1109/TEVC.2017.2669638

    Article  Google Scholar 

  4. Cheng R, Li M, Tian Y et al (2017) A benchmark test suite for evolutionary many-objective optimization. Complex Intell Syst 3:67–81. https://doi.org/10.1007/s40747-017-0039-7

    Article  MathSciNet  Google Scholar 

  5. Deb K, Thiele L, Laumanns M, et al (2002) Scalable multi-objective optimization test problems. In: Proceedings of the 2002 congress on evolutionary computation. Honolulu, HI, USA, pp 1–6. https://doi.org/10.1109/CEC.2002.1007032

  6. Deb K, Rao UBN, Karthik S (2007) Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling. In: Proceedings of the 4th international conference on evolutionary multi-criterion optimization. Springer, Berlin, pp 803–817

  7. Fan R, Wei L, Sun H et al (2020) An enhanced reference vectors-based multi-objective evolutionary algorithm with neighborhood-based adaptive adjustment. Neural Comput Appl 32:11,767-11,789. https://doi.org/10.1007/s00521-019-04660-5

    Article  Google Scholar 

  8. Feng L, Zhou W, Liu W et al (2022) Solving dynamic multiobjective problem via autoencoding evolutionary search. IEEE Trans Cybern 52:2649–2662. https://doi.org/10.1109/TCYB.2020.3017017

    Article  Google Scholar 

  9. Gong B, Shi Y, Sha F, et al (2012) Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE conference on computer vision and pattern recognition. Providence, RI, USA, pp 2066–2073. https://doi.org/10.1109/CVPR.2012.6247911

  10. Guan SU, Chen Q, Mo W (2005) Evolving dynamic multi-objective optimization problems with objective replacement. Artif Intell Rev 23:267–293. https://doi.org/10.1007/s10462-004-5900-6

    Article  Google Scholar 

  11. He X, Zhou Y, Chen Z et al (2019) Evolutionary many-objective optimization based on dynamical decomposition. IEEE Trans Evol Comput 23(3):361–375. https://doi.org/10.1109/TEVC.2018.2865590

    Article  Google Scholar 

  12. Hollander M, Wolfe DA, Chicken E (1999) Nonparametric statistical methods. Wiley, New York

    MATH  Google Scholar 

  13. Hu Y, Zheng J, Jiang S et al (2021) Handling dynamic multiobjective optimization environments via layered prediction and subspace-based diversity maintenance. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2021.3128584

    Article  Google Scholar 

  14. Hu Z, Yang J, Sun H et al (2017) An improved multi-objective evolutionary algorithm based on environmental and history information. Neurocomputing 222:170–182. https://doi.org/10.1016/j.neucom.2016.10.014

    Article  Google Scholar 

  15. Hu Z, Wei Z, Ma X et al (2020) Multi-parameter deep-perception and many-objective autonomous-control of rolling schedule on high speed cold tandem mill. ISA Trans 102:193–207. https://doi.org/10.1016/j.isatra.2020.02.024

    Article  Google Scholar 

  16. Hu Z, Wei Z, Sun H et al (2021) Optimization of metal rolling control using soft computing approaches: a review. Arch Comput Methods Eng 28:405–421. https://doi.org/10.1007/s11831-019-09380-6

    Article  Google Scholar 

  17. Hu Z, Li Y, Sun H et al (2022) Multitasking multiobjective optimization based on transfer component analysis. Inf Sci 605:182–201. https://doi.org/10.1016/j.ins.2022.05.037

    Article  Google Scholar 

  18. Huang L, Suh IH, Abraham A (2011) Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants. Inf Sci 181:2370–2391. https://doi.org/10.1016/j.ins.2010.12.015

    Article  Google Scholar 

  19. Jiang S, Yang S (2017) A steady-state and generational evolutionary algorithm for dynamic multi-objective optimization. IEEE Trans Evol Comput 21(1):65–82. https://doi.org/10.1109/TEVC.2016.2574621

    Article  Google Scholar 

  20. Liang Z, Zheng S, Zhu Z et al (2019) Hybrid of memory and prediction strategies for dynamic multiobjective optimization. Inf Sci 485:200–218. https://doi.org/10.1016/j.ins.2019.01.066

    Article  Google Scholar 

  21. Liu R, Li J, Fan J et al (2017) A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization. Eur J Oper Res 261:1028–1051. https://doi.org/10.1016/j.ejor.2017.03.048

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu R, Yang P, Liu J (2021) A dynamic multi-objective optimization evolutionary algorithm for complex environmental changes. Knowl-Based Syst 216(106):612. https://doi.org/10.1016/j.knosys.2020.106612

    Article  Google Scholar 

  23. Ma X, Yang J, Sun H et al (2021) Feature information prediction algorithm for dynamic multi-objective optimization problems. Eur J Oper Res 295:965–981. https://doi.org/10.1016/j.ejor.2021.01.028

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma X, Yang J, Sun H et al (2021) Multiregional co-evolutionary algorithm for dynamic multiobjective optimization. Inf Sci 545:1–24. https://doi.org/10.1016/j.ins.2020.07.009

    Article  MathSciNet  MATH  Google Scholar 

  25. Mardé H, Engelbrecht AP (2013) Performance measures for dynamic multi-objective optimisation algorithms. Inf Sci 250(11):61–81. https://doi.org/10.1016/j.ins.2013.06.051

    Article  MATH  Google Scholar 

  26. Muruganantham A, Tan KC, Vadakkepat P (2015) Evolutionary dynamic multiobjective optimization via Kalman filter prediction. IEEE Trans Cybern 46(12):1–12. https://doi.org/10.1109/TCYB.2015.2490738

    Article  Google Scholar 

  27. Praditwong K, Yao X (2006) A new multi-objective evolutionary optimisation algorithm: the two-archive algorithm. In: International conference on computational intelligence and security. Guangzhou, China, pp 95–104. https://doi.org/10.1109/ICCIAS.2006.294139

  28. Qin S, Sun C, Jin Y et al (2021) Large-scale evolutionary multiobjective optimization assisted by directed sampling. IEEE Trans Evol Comput 25(4):724–738. https://doi.org/10.1109/TEVC.2021.3063606

    Article  Google Scholar 

  29. Rahman CM, Rashid TA, Ahmed AM et al (2022) Multi-objective learner performance-based behavior algorithm with five multi-objective real-world engineering problems. Neural Comput Appl 34:6307–6329. https://doi.org/10.1007/s00521-021-06811-z

    Article  Google Scholar 

  30. Rong M, Gong D, Zhang Y et al (2019) Multidirectional prediction approach for dynamic multiobjective optimization problems. IEEE Trans Cybern 49(9):3362–3374. https://doi.org/10.1109/TCYB.2018.2842158

    Article  Google Scholar 

  31. Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. Department of Aeronautics and Astronautics, Massachusetts Institute of Technology. https://doi.org/10.1016/0008-8749(78)90168-5

  32. Sun H, Ma X, Hu Z et al (2022) A two stages prediction strategy for evolutionary dynamic multi-objective optimization. Appl Intell. https://doi.org/10.1109/TCYB.2013.2245892

    Article  Google Scholar 

  33. Wang H, Jiao L, Yao X (2015) \(\text{ Two}_{-}\)arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans Evol Comput 19(4):524–541. https://doi.org/10.1109/TEVC.2014.2350987

    Article  Google Scholar 

  34. Wei Z, Yang J, Hu Z et al (2020) An adaptive decomposition evolutionary algorithm based on environmental information for many-objective optimization. ISA Trans 111:108–120. https://doi.org/10.1016/j.isatra.2020.10.065

    Article  Google Scholar 

  35. Xu D, Jiang M, Hu W et al (2022) An online prediction approach based on incremental support vector machine for dynamic multiobjective optimization. IEEE Trans Evol Comput 26:690–703. https://doi.org/10.1109/TEVC.2021.3115036

    Article  Google Scholar 

  36. Zhang H, Ding J, Jiang M et al (2022) Inverse gaussian process modeling for evolutionary dynamic multiobjective optimization. IEEE Trans Cybern 52:11,240–11,253. https://doi.org/10.1109/TCYB.2021.3070434

    Article  Google Scholar 

  37. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731. https://doi.org/10.1109/TEVC.2007.892759

    Article  Google Scholar 

  38. Zhang Q, Yang S, Jiang S et al (2020) Novel prediction strategies for dynamic multi-objective optimization. IEEE Trans Evol Comput 24:260–274. https://doi.org/10.1109/TEVC.2019.2922834

    Article  Google Scholar 

  39. Zhao Q, Yan B, Shi Y et al (2022) Evolutionary dynamic multiobjective optimization via learning from historical search process. IEEE Trans Cybern 52:6119–6130. https://doi.org/10.1109/TCYB.2021.3059252

    Article  Google Scholar 

  40. Zheng J, Zhou Y, Zou J et al (2021) A prediction strategy based on decision variable analysis for dynamic multi-objective optimization. Swarm Evol Comput 60(100):786. https://doi.org/10.1016/j.swevo.2020.100786

    Article  Google Scholar 

  41. Zhou A, Jin Y, Zhang Q (2013) A population prediction strategy for evolutionary dynamic multiobjective optimization. IEEE Trans Cybern 44(1):40–53. https://doi.org/10.1109/TCYB.2013.2245892

    Article  Google Scholar 

  42. Zhu Q, Lin Q, Chen J (2018) A gene-level hybrid search framework for multiobjective evolutionary optimization. Neural Comput Appl 30:759–773. https://doi.org/10.1007/s00521-018-3563-5

    Article  Google Scholar 

  43. Zou J, Li Q, Yang S et al (2019) A dynamic multiobjective evolutionary algorithm based on a dynamic evolutionary environment model. Swarm Evol Comput 44:247–259. https://doi.org/10.1016/j.swevo.2018.03.010

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project supported by the National key research and development program (No.2018YFB1702300), the National Natural Science Foundation of China (Grant No.62003296, 61803327, 62073276), the Natural Science Foundation of Hebei (No.F2020203031), Science and Technology Research Projects of Hebei University (No.QN2020225), Provincial Key Laboratory Performance Subsidy Project (No.22567612 H) and Hebei Province Graduate Innovation Funding Project (No.CXZZBS2022134). The authors would like to thank the editor and anonymous reviewers for their helpful comments and suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Sun.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 3010 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Sun, H., Hu, Z. et al. Multi-spatial information joint guidance evolutionary algorithm for dynamic multi-objective optimization with a changing number of objectives. Neural Comput & Applic 35, 15167–15199 (2023). https://doi.org/10.1007/s00521-023-08369-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08369-4

Keywords

Navigation