Skip to main content

Advertisement

Log in

Time-series prediction of hourly atmospheric pressure using ANFIS and LSTM approaches

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Atmospheric pressure (AP), which is an indicator of weather events, plays an important role in climatology, agriculture, meteorology, atmospheric and environmental science, human and animal life, and Earth’s living ecosystem. In this regard, accurate AP forecasting plays a crucial role in today’s life as it provides critical information about future weather events. In this study, four different machine learning techniques such as long short-term memory (LSTM) neural network, adaptive neuro-fuzzy inference system (ANFIS) with fuzzy c-means, ANFIS with subtractive clustering, and ANFIS with grid partition (GP) were used for one-hour-ahead AP forecasting. To achieve this, the hourly AP data measured between 2012 and 2019 at the seven measurement stations (Adana, Ankara, Gumushane, Denizli, Kirklareli, Sanliurfa, and Van) in different climate regions of Turkey were obtained. The estimation accuracy was verified by four performance criteria: R, RMSE, MAPE, and MAE. As a result, the highest relative R-value of 0.9986 and the lowest error values of RMSE = 0.2905 hPa, MAPE = 0.0230%, and MAE = 0.2040 hPa for one-hour-ahead AP forecasting were obtained from the ANFIS-GP model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Erdil A, Arcaklioglu E (2013) The prediction of meteorological variables using artificial neural network. Neural Comput Appl 22(7):1677–1683. https://doi.org/10.1007/s00521-012-1210-0

    Article  Google Scholar 

  2. Tektaş M (2010) Weather forecasting using ANFIS and ARIMA models. Environ Res Eng Manag 51(1):5–10

    Google Scholar 

  3. Gaspar P, Ponte RM (1997) Relation between sea level and barometric pressure determined from altimeter data and model simulations. J Geophys Res Oceans 102(C1):961–971. https://doi.org/10.1029/96JC02920

    Article  Google Scholar 

  4. Hossain M, Rekabdar B, Louis SJ, S Dascalu (2015) Forecasting the weather of Nevada: a deep learning approach. In 2015 international joint conference on neural networks (IJCNN) IEEE, pp 1–6. https://doi.org/10.1109/ijcnn.2015.7280812

  5. La Rocca P, Riggi D, Riggi F (2010) Time series analysis of barometric pressure data. Eur J Phys 31(3):645. https://doi.org/10.1088/0143-0807/31/3/022

    Article  Google Scholar 

  6. Abhishek K, Singh MP, Ghosh S, Anand A (2012) Weather forecasting model using artificial neural network. Procedia Technol 4:311–318. https://doi.org/10.1016/j.protcy.2012.05.047

    Article  Google Scholar 

  7. Dutta B, Mitra S (2011) Better prediction of humidity using artificial neural network. In Fourth international conference on the applications of digital information and web technologies (ICADIWT 2011) IEEE, pp 59–64. https://doi.org/10.1109/ICADIWT.2011.6041395

  8. Ray A, Mukhopadhyay S, Datta B, Pal S (2013) Prediction of atmospheric pressure at ground level using artificial neural network. Int J Res Comput Sci 3(1):11–18. https://doi.org/10.7815/ijorcs.31.2013.056

    Article  Google Scholar 

  9. Mateus P, Catalão J, Mendes VB, Nico G (2020) An ERA5-based hourly global pressure and temperature (HGPT) Model. Remote Sens 12(7):1098. https://doi.org/10.3390/rs12071098

    Article  Google Scholar 

  10. Li Q, Zhao Y, Yu F (2020) A novel multichannel Long Short-Term Memory Method with time series for soil temperature modeling. IEEE Access 8:182026–182043. https://doi.org/10.1109/ACCESS.2020.3028995

    Article  Google Scholar 

  11. Althelaya KA, Mohammed SA, El-Alfy ESM (2021) Combining deep learning and multiresolution analysis for stock market forecasting. IEEE Access 9:13099–13111. https://doi.org/10.1109/ACCESS.2021.3051872

    Article  Google Scholar 

  12. Eynard J, Grieu S, Polit M (2011) Wavelet-based multi-resolution analysis and artificial neural networks for forecasting temperature and thermal power consumption. Eng Appl Artif Intell 24:501–516. https://doi.org/10.1016/j.engappai.2010.09.003

    Article  Google Scholar 

  13. He X, Guan H, Zhang X, Simmons CT (2014) A wavelet-based multiple linear regression model for forecasting monthly rainfall. Int J Climatol 34:1898–1912. https://doi.org/10.1002/joc.3809

    Article  Google Scholar 

  14. Maslova I, Ticlavilca AM, McKee M (2016) Adjusting wavelet-based multiresolution analysis boundary conditions for long-term streamflow forecasting. Hydrol Process 30(1):57–74. https://doi.org/10.1002/hyp.10564

    Article  Google Scholar 

  15. Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  16. Karakuş O, Kuruoğlu EE, Altınkaya MA (2017) One-day ahead wind speed/power prediction based on polynomial autoregressive model. IET Renew Power Gener 11(11):1430–1439. https://doi.org/10.1049/iet-rpg.2016.0972

    Article  Google Scholar 

  17. Mamdani EH, Assilian S (1975) 1975: An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7(1):1–13. https://doi.org/10.1016/S0020-7373(75)80002-2

    Article  MATH  Google Scholar 

  18. Mamdani EH (1977) Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans Comput C 26(12):1182–1191. https://doi.org/10.1109/TC.1977.1674779

    Article  MATH  Google Scholar 

  19. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8:199–249. https://doi.org/10.1016/0020-0255(75)90036-5

    Article  MathSciNet  MATH  Google Scholar 

  20. MonirVaghefi H, Sandgani MR, Shoorehdeli MA (2013) Interval type-2 adaptive network-based fuzzy inference system (ANFIS) with type-2 non-singleton fuzzification. In: 13th Iranian conference on fuzzy systems (IFSC), pp 1–6. https://doi.org/10.1109/IFSC.2013.6675612

  21. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Sys Man Cybern SMC 15(1):116–132. https://doi.org/10.1109/TSMC.1985.6313399

    Article  MATH  Google Scholar 

  22. Kumar R, Al-Turjman F, Srinivas NB, Braveen M, Ramakrishnan J (2021) ANFIS for prediction of epidemic peak and infected cases for COVID-19 in India. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06412-w

    Article  Google Scholar 

  23. Bilgili M, Yildirim A, Ozbek A, Celebi K, Ekinci F (2021) Long short-term memory (LSTM) neural network and adaptive neuro-fuzzy inference system (ANFIS) approach in modeling renewable electricity generation forecasting. Int J Green Energy 18(6):578–594. https://doi.org/10.1080/15435075.2020.1865375

    Article  Google Scholar 

  24. Ozbek A, Yildirim A, Bilgili M (2021) Deep learning approach for one-hour ahead forecasting of energy production in a solar-PV plant. Energy Sour Part A: Recovery Util Environ Eff. https://doi.org/10.1080/15567036.2021.1924316

    Article  Google Scholar 

  25. Tabari H, Kisi O, Ezani A, Talaee PH (2012) SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. J Hydrol 444:78–89. https://doi.org/10.1016/j.jhydrol.2012.04.007

    Article  Google Scholar 

  26. Katipoğlu OM (2022) Prediction of missing temperature data using different machine learning methods. Arab J Geosci 15(1):1–11. https://doi.org/10.1007/s12517-021-09290-7

    Article  Google Scholar 

  27. Benmouiza K, Cheknane A (2019) Clustered ANFIS network using fuzzy c-means, subtractive clustering, and grid partitioning for hourly solar radiation forecasting. Theoret Appl Climatol 137(1):31–43. https://doi.org/10.1007/s00704-018-2576-4

    Article  Google Scholar 

  28. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  29. Piotrowski AP, Napiorkowski MJ, Napiorkowski JJ, Osuch M (2015) Comparing various artificial neural network types for water temperature prediction in rivers. J Hydrol 529:302–315. https://doi.org/10.1016/j.jhydrol.2015.07.044

    Article  Google Scholar 

  30. Salman AG, Heryadi Y, Abdurahman E, Suparta W (2018) Single layer & multi-layer long short-term memory (LSTM) model with intermediate variables for weather forecasting. Procedia Comput Sci 135:89–98. https://doi.org/10.1016/j.procs.2018.08.153

    Article  Google Scholar 

  31. Zahroh S, Hidayat Y, Pontoh RS, Santoso A, Sukono F, Bon AT (2019) Modeling and forecasting daily temperature in Bandung. In Proceedings of the international conference on industrial engineering and operations management Riyadh, Saudi Arabia, pp 406–12

  32. Cai Q, Yan B, Su B, Liu S, Xiang M, Wen Y, Cheng Y, Feng N (2020) Short-term load forecasting method based on deep neural network with sample weights. Int Trans Electr Energy Syst 30(5):1–19. https://doi.org/10.1002/2050-7038.12340

    Article  Google Scholar 

  33. Cho MY, Chang JM, Huang CC (2020) Application of parallel Elman neural network to hourly area solar PV plant generation estimation. Int Trans Electr Energy Syst 30(8):1–19. https://doi.org/10.1002/2050-7038.12470

    Article  Google Scholar 

  34. Mathworks (2020) Long Short-Term Memory Networks. https://www.mathworks.com/help/deeplearning/ug/long-short-term-memory-networks.html. Accessed 17 May 2020

  35. Yan X, Weihan W, Chang M (2021) Research on financial assets transaction prediction model based on LSTM neural network. Neural Comput Appl 3:257–270. https://doi.org/10.1007/s00521-020-04992-7

    Article  Google Scholar 

  36. Li W, Kiaghadi A, Dawson C (2021) High temporal resolution rainfall–runoff modeling using long-short-term-memory (LSTM) networks. Neural Comput Appl 33:1261–1278. https://doi.org/10.1007/s00521-020-05010-6

    Article  Google Scholar 

  37. Zolfaghari M, Golabi MR (2021) Modeling and predicting the electricity production in hydropower using conjunction of wavelet transform, long short-term memory and random forest models. Renew Energy 170:1367–1381. https://doi.org/10.1016/j.renene.2021.02.017

    Article  Google Scholar 

  38. Benhaddi M, Ouarzazi J (2021) Multivariate time series forecasting with dilated residual convolutional neural networks for urban air quality prediction. Arab J Sci Eng 46:3423–3442. https://doi.org/10.1007/s13369-020-05109-x

    Article  Google Scholar 

  39. Peng J, Kimmig A, Wang J, Liu X, Niu Z, Ovtcharova J (2021) Dual-stage attention-based long-short-term memory neural networks for energy demand prediction. Energy Build 249:111211

    Article  Google Scholar 

  40. Chen K, Kuang C, Wang L, Chen K, Han X, Fan J (2022) Storm surge prediction based on long short-term memory neural network in the East China Sea. Appl Sci 12:181. https://doi.org/10.3390/app12010181

    Article  Google Scholar 

  41. Kurnaz G, Demir AS (2022) Prediction of SO2 and PM10 air pollutants using a deep learning-based recurrent neural network: case of industrial city Sakarya. Urban Clim 41:101051. https://doi.org/10.1016/j.uclim.2021.101051

    Article  Google Scholar 

  42. Guleryuz D (2021) Estimation of soil temperatures with machine learning algorithms—Giresun and Bayburt stations in Turkey. Theoret Appl Climatol. https://doi.org/10.1007/s00704-021-03819-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Turkish State Meteorological Service on account of supplying the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şaban Ünal.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgili, M., Ilhan, A. & Ünal, Ş. Time-series prediction of hourly atmospheric pressure using ANFIS and LSTM approaches. Neural Comput & Applic 34, 15633–15648 (2022). https://doi.org/10.1007/s00521-022-07275-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07275-5

Keywords

Navigation