Skip to main content
Log in

Event-triggered network congestion control of TCP/AWM systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

For the nonlinear TCP/AWM network congestion control system with external disturbances, under the framework of backstepping control method, an adaptive network congestion control strategy based on event-triggered mechanism is proposed. This strategy reduces the waste of network resources by introducing an event-triggered mechanism and uses RBF neural network to deal with external disturbances. The Lyapunov theory is used to prove that all signals in the closed-loop system are bounded. Finally, the proposed method is verified by simulation and is compared with PID, which further verifies the effectiveness of the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Braden B, Clark D, Crowcroft J et al (1998) Recommendations on queue management and congestion avoidance in the Internet: RFC 2309. Internet Society, Reston

    Book  Google Scholar 

  2. Floyd S, Jacobson V (1993) Random early detection gateways for congestion avoidance. IEEE ACM Trans Netw 1(4):397–413

    Article  Google Scholar 

  3. Feng W, Shin KG, Kandlur DD et al (2002) The BLUE active queue management algorithms. IEEE ACM Trans Netw 10(4):513–528

    Article  Google Scholar 

  4. Liu S, Basar T, Srikant R (2005) Exponential-RED: a stabilizing AQM scheme for low- and high-speed TCP protocols. IEEE/ACM Trans Netw 13(5):1068–1081

    Article  Google Scholar 

  5. Ott TJ, Lakshman TV, Wong LH et al (1999) SRED: stabilized RED. Int Conf Comput Commun 3(1):1346–1355

    Google Scholar 

  6. Zhou K, Yeung KL, Li VO et al (2006) Nonlinear RED: a simple yet efficient active queue management scheme. Comput Netw 50(18):3784–3794

    Article  Google Scholar 

  7. Long C, Zhao B, Guan X et al (2005) The Yellow active queue management algorithm. Comput Netw 47(4):525–550

    Article  Google Scholar 

  8. Misra V, Gong WB, Towsley D (2000) Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED. In: Proceedings. of the 19th IEEE int. conference on SIGCOMM 30:151–160

  9. Unal HU, Melchoraguilar D, Ustebay D et al (2013) Comparison of PI controllers designed for the delay model of TCP/AQM networks. Comput Commun 36(10):1225–1234

    Article  Google Scholar 

  10. Sun J, Chen G, Ko K et al (2003) PD-controller: a new active queue management scheme. In: Global communications conference, pp 3103–3107

  11. Bisoy SK, Pattnaik PK (2017) Design of feedback controller for TCP/AQM network. Eng Sci Technol Int J 20(1):116–132

    Google Scholar 

  12. Ye CY, Jing YW, Chu JX (2013) Adaptive sliding mode control for TCP networks with input saturation. In: IEEE Chinese control and decision conference, pp 1780–1784

  13. Jing YW, Yu N, Kong Z et al (2008) Active queue management algorithm based on fuzzy sliding model controller. IFAC Proc Vol 41(2):6148–6153

    Article  Google Scholar 

  14. Ye CY, Jing YW (2012) Adaptive neural sliding mode control for TCP networks. Electr Mach Control 16(11):99–103

    Google Scholar 

  15. Wang JS, Gao ZW, Shu YT et al (2007) RBF-PID based adaptive active queue management algorithm for TCP network. In: International conference on control and automation, pp 171–176

  16. Sheikhan M, Shahnazi R, Hemmati E et al (2013) Adaptive active queue management controller for TCP communication networks using PSO-RBF models. Neural Comput Appl 22(5):933–945

    Article  Google Scholar 

  17. Liu Y, Liu XP, Jing YW et al (2017) Adaptive backstepping H infinite tracking control with prescribed performance for internet congestion. ISA Trans 72:92–99

    Article  Google Scholar 

  18. Wang K, Liu XP, Jing YW (2020) Robust finite-time H infinite congestion control for a class of AQM network systems. Neural Comput Appl 33(8):3105–3112

    Article  Google Scholar 

  19. Li ZH, Liu YP, Jing YW et al (2019) Design of adaptive backstepping congestion controller for TCP networks with UDP flows based on minimax. ISA Trans 95:27–34

    Article  Google Scholar 

  20. Wang K, Liu Y, Liu XP et al (2019) Adaptive fuzzy funnel congestion control for TCP/AQM network. ISA Trans 95:11–17

    Article  Google Scholar 

  21. Liu Y, Jing YW, Chen XY (2019) Adaptive neural practically finite-time congestion control for TCP/AQM network. Neurocomputing 351:26–32

    Article  Google Scholar 

  22. Wang K, Liu Y, Liu XP et al (2019) Study on TCP/AQM network congestion with adaptive neural network and barrier Lyapunov function. Neurocomputing 363:27–34

    Article  Google Scholar 

  23. Zou AM, Kumar KD, de Ruiter AHJ (2020) Fixed-time attitude tracking control for rigid spacecraft. Automatica 113(113):108792

    Article  MathSciNet  Google Scholar 

  24. Zhou WX, Wang YY, Ahn CK, Jun C, Chen CY (2020) Adaptive fuzzy backstepping-based formation control of unmanned surface vehicles with unknown model nonlinearity and actuator saturation. IEEE Trans Veh Technol 69(12):14749–14764

    Article  Google Scholar 

  25. Barbera M, Lombardo A, Panarello C, et al (2007) Active window management: an efficient gateway mechanism for TCP traffic control. In: International conference on communications, pp 6141–6148

  26. Barbera M, Lombardo A, Panarello C et al (2010) Queue stability analysis and performance evaluation of a TCP-compliant window management mechanism. IEEE/ACM Trans Netw 18(4):1275–1288

    Article  Google Scholar 

  27. Lombardo A, Panarello C, Schembra G (2010) Applying active window management for jitter control and loss avoidance in video streaming over TCP connections. IEEE Global Telecommun Conf 2010:1–6

    Google Scholar 

  28. Yuan XD, Jing YW, Jiang N (2016) Research of control scheme of AWM based on PID. In: IEEE Chinese control and decision conference, pp 1512–1516

  29. Li ZH, Chen XY, Ding SH et al (2020) TCP/AWM network congestion algorithm with funnel control and arbitrary setting time. Appl Math Comput 385:125410

    MathSciNet  MATH  Google Scholar 

  30. Astrom KJ, Bernhardsson B (1999) Comparison of periodic and event based sampling for first-order stochastic systems. IFAC Proc Vol 32(2):5006–5011

    Article  Google Scholar 

  31. Liu CG, Liu XP, Wang HQ et al (2019) Event-triggered adaptive tracking control for uncertain nonlinear systems based on a new funnel function. ISA Trans 99:130–138

    Article  Google Scholar 

  32. Behera AK, Bandyopadhyay B (2014) Event based robust stabilization of linear systems. In: Conference of the industrial electronics society, pp 133–138

  33. Zhang J, Feng G (2014) Event-driven observer-based output feedback control for linear systems. Automatica 50(7):1852–1859

    Article  MathSciNet  Google Scholar 

  34. Liu QH, Ling M, Shi Y et al (2020) Event-triggered adaptive attitude control for flexible spacecraft with actuator nonlinearity. Aerosp Sci Technol 106:106111

    Article  Google Scholar 

  35. Zhao NN, Ouyang XY, Wu LB, Shi FR (2021) Event-triggered adaptive prescribed performance control of uncertain nonlinear systems with unknown control directions. ISA Trans 108:121–130

    Article  Google Scholar 

  36. Goebel R, Teel AR (2008) Zeno behavior in homogeneous hybrid systems. In: 2008 47th IEEE conference on decision and control, pp 2758–2763

  37. Yuan XD (2016) On active queue management algorithms based on router, Northeastern University

  38. Polycarpou MM, Ioannou PA (1996) A robust adaptive nonlinear control design. Automatica 32(3):423–427

    Article  MathSciNet  Google Scholar 

  39. Polycarpou MM (1996) Stable adaptive neural control scheme for nonlinear systems. IEEE Trans Autom Control 41(3):447–451

    Article  MathSciNet  Google Scholar 

  40. Wang C, Yang G (2018) Observer-based adaptive prescribed performance tracking control for nonlinear systems with unknown control direction and input saturation. Neurocomputing 284:17–26

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Funds of China (Grant No.61773108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanwei Jing.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Jing, Y. Event-triggered network congestion control of TCP/AWM systems. Neural Comput & Applic 33, 15877–15886 (2021). https://doi.org/10.1007/s00521-021-06209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06209-x

Keywords

Navigation