Skip to main content
Log in

Nonnegative matrix factorization algorithms based on the inertial projection neural network

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents two methods for nonnegative matrix factorization based on an inertial projection neural network (IPNN). The first method applies two IPNNs for optimizing one matrix, with the other fixed alternatively, while the second optimizes two matrices simultaneously using a single IPNN. With the proposed methods, different local optimum solutions can be found under the same initial conditions, whereas most traditional methods can only find one local optimum solution. Moreover, experimental results on synthetic data, signal processing, and clustering in real-world data demonstrate the effectiveness and performance of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhou G, Andrzej C, Xie S (2012) Fast nonnegative matrix/tensor factorization based on low-rank approximation. IEEE Trans Signal Process 60(6):2928–2940

    Article  MathSciNet  MATH  Google Scholar 

  2. Liu H, Yang Z, Yang J, Wu Z, Li X (2014) Local coordinate concept factorization for image representation. IEEE Trans Neural Netw Learn Syst 25(6):1071–1082

    Article  Google Scholar 

  3. Zoidi O, Tefas A, Pitas T (2013) Multiplicative update rules for concurrent nonnegative matrix factorization and maximum margin classification. IEEE Trans Neural Netw Learn Syst 24(3):422–434

    Article  Google Scholar 

  4. Sidiropoulos ND, Huang K, Swami A (2014) Non-negative matrix factorization revisited: uniqueness and algorithm for symmetric decomposition. IEEE Trans Signal Process 62(1):211–224

    Article  MathSciNet  MATH  Google Scholar 

  5. Ren W, Li G, Tu D, Jia L (2014) Nonnegative matrix factorization with regularizations. IEEE J Emerg Sel Top Circuits Syst 4(1):153–164

    Article  Google Scholar 

  6. Chorowski J, Zurada JM (2015) Learning understandable neural networks with nonnegative weight constraints. IEEE Trans Neural Netw Learn Syst 26(1):62–69

    Article  MathSciNet  Google Scholar 

  7. Cai D, He XF, Han JW et al (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560

    Article  Google Scholar 

  8. Li P, Bu J, Zhang L, Chen C (2015) Graph-based local concept coordinate factorization. Knowl Inf Syst 43(1):103–126

    Article  Google Scholar 

  9. Li P, Bu J, Ji R, Chun C, Cai D (2014) Discriminative orthogonal nonnegative matrix factorization with flexibility for data representation. Expert Syst Appl 41(2):1283–1293

    Article  Google Scholar 

  10. Li P, Bu J, chen C, He Z, Cai D (2013) Relational multimanifold coclustering. IEEE Trans Cybern 43(6):1871

    Article  Google Scholar 

  11. Li P, Bu J, chen C, Wang C, Cai D (2013) Subspace learning via locally constrained a-optimal nonnegative projection. Neurocomputing 115:49–62

    Article  Google Scholar 

  12. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791

    Article  MATH  Google Scholar 

  13. Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2):111–126

    Article  Google Scholar 

  14. Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. In: Advances in neural information processing systems, pp 556–562

  15. Berry MW, Browne M, Langville AN, Pauca Amy N VP, Plemmons RJ (2007) Algorithms and applications for approximate nonnegative matrix factorization. Comput Stat Data Anal 52(1):155–173

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin CJ (2007) Projected gradient methods for nonnegative matrix factorization. Neural Comput 19(10):2756–2779

    Article  MathSciNet  MATH  Google Scholar 

  17. Zdunek R, Cichocki A (2006) Non-negative matrix factorization with quasi-Newton optimization. In: International conference on artificial intelligence and soft computing, pp 870–879. Springer

  18. Pierre C (2007) Fast newton-type methods for the least squares nonnegative matrix approximation problem. SIAM Int Conf Data Min 1(1):38–51

    Google Scholar 

  19. Han L, Neumann M, Prasad U (2009) Alternating projected barzilai-borwein methods for nonnegative matrix factorization. Electron Trans Numer Anal 36:54–82

    MathSciNet  MATH  Google Scholar 

  20. Guan N, Tao D, Luo Z, Yuan B (2012) Nenmf: an optimal gradient method for nonnegative matrix factorization. IEEE Trans Signal Process 60(6):2882–2898

    Article  MathSciNet  MATH  Google Scholar 

  21. Hopfield JJ, Tank DW (1985) neural computation of decisions in optimization problems. Biol Cybern 52(3):141–152

    MATH  Google Scholar 

  22. Xia Y, Leung H, Wang J (2002) A projection neural network and its application to constrained optimization problems. IEEE Trans Circuits Syst I Fundam Theory Appl 49(4):447–458

    Article  MathSciNet  MATH  Google Scholar 

  23. He X, Huang T, Yu J et al (2017) An inertial projection neural network for solving variational inequalities. IEEE Trans Cybern 47(3):809–814

    Article  Google Scholar 

  24. Che H, He X, Li C, Huang T (2015) An intelligent method of swarm neural networks for equalities-constrained nonconvex optimization. Neurocomputing 167:569–577

    Article  Google Scholar 

  25. Wang J (1993) Analysis and design of a recurrent neural network for linear programming. IEEE Trans Circuits Syst I Fundam Theory Appl 40(9):613–618

    Article  MATH  Google Scholar 

  26. Hu X, Zhang B (2009) An alternative recurrent neural network for solving variational inequalities and related optimization problems. IEEE Trans Syst Man Cybern B (Cybern) 39(6):1640–1645

    Article  Google Scholar 

  27. Li C, Yu X, Huang T et al (2016) A generalized Hopfield network for nonsmooth constrained convex optimization: Lie derivative approach. IEEE Trans Neural Netw Learn Syst 27(2):308–321

    Article  MathSciNet  Google Scholar 

  28. Hu X, Wang J (2007) Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems. IEEE Trans Syst Man Cybern B (Cybern) 37(5):1414–1421

    Article  Google Scholar 

  29. Yan Z, Wang J, Li G (2014) A collective neurodynamic optimization approach to bound-constrained nonconvex optimization. Neural Netw 55:20–29

    Article  MATH  Google Scholar 

  30. Liu Q, Wang J (2008) A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic programming. IEEE Trans Neural Netw 19(4):558–570

    Article  Google Scholar 

  31. Fan J, Wang J (2016) A collective neurodynamic optimization approach to nonnegative matrix factorization. IEEE Trans Neural Netw 99:1–13

    Google Scholar 

  32. Yan Z, Wang J (2015) Nonlinear model predictive control based on collective neurodynamic optimization. IEEE Trans Neural Netw Learn Syst 26(4):840–850

    Article  MathSciNet  Google Scholar 

  33. Shi J, Ren X, Dai G, Wang J, Zhang Z (2011) A non-convex relaxation approach to sparse dictionary learning. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR), pp 1809–1816. IEEE

  34. Li G, Yan Z, Wang J (2015) A one-layer recurrent neural network for constrained nonconvex optimization. Neural Netw 61:10–21

    Article  MATH  Google Scholar 

  35. Chen G, Li C, Dong Z (2017) Parallel and distributed computation for dynamical economic dispatch. IEEE Trans Smart Grid 99:1–1

    Article  Google Scholar 

  36. Li H, Chen G, Huang T, Dong Z (2016) High-performance consensus control in networked systems with limited bandwidth communication and time-varying directed topologies. IEEE Trans Neural Netw Learn Syst 28(5):1043–1054

    Article  Google Scholar 

  37. Li H, Chen G, Huang T et al (2016) Event-triggered distributed average consensus over directed digital networks with limited communication bandwidth. IEEE Trans Cybern 46(12):3098–3110

    Article  Google Scholar 

  38. He X, Li C, Huang T et al (2014) A recurrent neural network for solving bilevel linear programming problem. IEEE Trans Neural Netw Learn Syst 25(4):824–830

    Article  Google Scholar 

  39. He X, Liand C, Huang T, Li C, Huang J (2014) A recurrent neural network for solving bilevel linear programming problem. IEEE Trans Neural Netw Learn Syst 25(4):824

    Article  Google Scholar 

  40. He X, Ho DWC, Huang T et al (2017) Second-order continuous-time algorithms for economic power dispatch in smart grids. IEEE Trans Syst Man Cybern: Syst. https://doi.org/10.1109/TSMC.2017.26722051

    Article  Google Scholar 

  41. Li H, Chen G, Liao X, Huang T (2016) Leader-following consensus of discrete-time multiagent systems with encodingcdecoding. IEEE Trans Circuits Syst II Express Briefs 63(4):401–405

    Article  Google Scholar 

  42. Bertsekas DP (1999) Nonlinear programming. Athena Scientific, Belmont

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (Grant No.: 61374078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaojie Li.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Li, C., He, X. et al. Nonnegative matrix factorization algorithms based on the inertial projection neural network. Neural Comput & Applic 31, 4215–4229 (2019). https://doi.org/10.1007/s00521-017-3337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3337-5

Keywords

Navigation