Skip to main content
Log in

A two-stage short-term load forecasting approach using temperature daily profiles estimation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Electrical load forecasting plays an important role in the regular planning of power systems, in which load is influenced by several factors that must be analysed and identified prior to modelling in order to ensure better and instant load balancing between supply and demand. This paper proposes a two-stage approach for short-term electricity load forecasting. In the first stage, a set of day classes of load profiles are identified using K-means clustering algorithm alongside daily temperature estimation profiles. The proposed estimation method is particularly useful in case of lack of historical regular temperature data. While in the second stage, the stacked denoising autoencoders approach is used to build regression models able to forecast each day type independently. The obtained models are trained and evaluated using hourly electricity power data offered by Algeria’s National Electricity and Gas Company. Several models are investigated to substantiate the accuracy and effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ramanathan R, Engle R, Granger CW et al (1997) Short-run forecasts of electricity loads and peaks. Int J Forecast 13:161–174. https://doi.org/10.1016/S0169-2070(97)00015-0

    Article  Google Scholar 

  2. Huang S-J, Shih K-R (2003) Short-term load forecasting via ARMA model identification including non-Gaussian process considerations. IEEE Trans Power Syst 18:673–679. https://doi.org/10.1109/TPWRS.2003.811010

    Article  Google Scholar 

  3. Sargunaraj S, Gupta DS, Devi S (1997) Short-term load forecasting for demand side management. IEE Proc Gener Transm Distrib 144:68–74. https://doi.org/10.1049/ip-gtd:19970599

    Article  Google Scholar 

  4. Zarchan P, Musoff H (2005) Fundamentals of Kalman filtering: a practical approach. American Institute of Aeronautics and Astronautics, Virginia

    Google Scholar 

  5. Kyriakides E, Polycarpou M (2007) Short term electric load forecasting: a tutorial. In: Trends in neural computation. Springer, Berlin, pp 391–418

  6. Haykin SO (2009) Neural networks and learning machines. Pearson, New York

    Google Scholar 

  7. Hippert HS, Pedreira CE, Souza RC (2001) Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans Power Syst 16:44–55. https://doi.org/10.1109/59.910780

    Article  Google Scholar 

  8. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  9. Yuancheng L, Tingjian F, Erkeng Y (2003) Study of support vector machines for short-term load forecasting. Proc Chin Soc Electr Eng 23:55–59

    MATH  Google Scholar 

  10. Shensa MJ (1992) The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans Signal Process 40:2464–2482. https://doi.org/10.1109/78.157290

    Article  MATH  Google Scholar 

  11. Bashir Z, El-Hawary M (2009) Applying wavelets to short-term load forecasting using PSO-based neural networks. IEEE Trans Power Syst 24:20–27. https://doi.org/10.1109/TPWRS.2008.2008606

    Article  Google Scholar 

  12. Mamlook R, Badran O, Abdulhadi E (2009) A fuzzy inference model for short-term load forecasting. Energy Policy 37:1239–1248. https://doi.org/10.1016/j.enpol.2008.10.051

    Article  Google Scholar 

  13. Senabre C, Valero S, Aparicio J (2010) Using a self organizing map neural network for short-term load forecasting, analysis of different input data patterns. In: Distributed computing and artificial intelligence: 7th international symposium. Springer, Berlin, pp 397–400

  14. Gonzalez AJ, Dankel DD (1993) The engineering of knowledge-based systems: theory and practice. Prentice-Hall, New Jersey

    Google Scholar 

  15. Rahman S, Bhatnagar R (1988) An expert system based algorithm for short term load forecast. IEEE Trans Power Syst 3:392–399. https://doi.org/10.1109/59.192889

    Article  Google Scholar 

  16. Fan S, Chen L (2006) Short-term load forecasting based on an adaptive hybrid method. IEEE Trans Power Syst 21:392–401. https://doi.org/10.1109/TPWRS.2005.860944

    Article  Google Scholar 

  17. Amjady N, Keynia F (2009) Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm. Energy 34:46–57. https://doi.org/10.1016/j.energy.2008.09.020

    Article  Google Scholar 

  18. El Desouky A, Elkateb M (2000) Hybrid adaptive techniques for electric-load forecast using ANN and ARIMA. IEE Proc Gener Transm Distrib 147:213–217. https://doi.org/10.1049/ip-gtd:20000521

    Article  Google Scholar 

  19. Tzafestas S, Tzafestas E (2001) Computational intelligence techniques for short-term electric load forecasting. J Intell Robot Syst 31:7–68. https://doi.org/10.1023/A:1012402930055

    Article  MATH  Google Scholar 

  20. Alfares HK, Nazeeruddin M (2002) Electric load forecasting: literature survey and classification of methods. Int J Syst Sci 33:23–34. https://doi.org/10.1080/00207720110067421

    Article  MATH  Google Scholar 

  21. Feinberg EA, Genethliou D (2005) Load forecasting. In: Applied mathematics for restructured electric power systems: optimization, control, and computational intelligence. Springer, Berlin, pp 269–285

  22. Chen Y, Luh PB, Guan C et al (2010) Short-term load forecasting: similar day-based wavelet neural networks. IEEE Trans Power Syst 25:322–330. https://doi.org/10.1109/TPWRS.2009.2030426

    Article  Google Scholar 

  23. Çevik HH, Çunkaş M (2015) Short-term load forecasting using fuzzy logic and ANFIS. Neural Comput Appl 26:1355–1367. https://doi.org/10.1007/s00521-014-1809-4

    Article  Google Scholar 

  24. Fan S, Hyndman RJ (2012) Short-term load forecasting based on a semi-parametric additive model. IEEE Trans Power Syst 27:134–141. https://doi.org/10.1109/TPWRS.2011.2162082

    Article  Google Scholar 

  25. Song K-B, Baek Y-S, Hong DH, Jang G (2005) Short-term load forecasting for the holidays using fuzzy linear regression method. IEEE Trans Power Syst 20:96–101. https://doi.org/10.1109/TPWRS.2004.835632

    Article  Google Scholar 

  26. Längkvist M, Karlsson L, Loutfi A (2014) A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognit Lett 42:11–24. https://doi.org/10.1016/j.patrec.2014.01.008

    Article  Google Scholar 

  27. Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: Schlkopf PB, Platt JC, Hoffman T (eds) Advances in neural information processing systems. MIT Press, Cambridge, pp 153–160

    Google Scholar 

  28. Vincent P, Larochelle H, Lajoie I et al (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408

    MathSciNet  MATH  Google Scholar 

  29. Romeu P, Zamora-Martínez F, Botella-Rocamora P, Pardo J (2013) Time-series forecasting of indoor temperature using pre-trained deep neural networks. In: International conference on artificial neural networks. Springer, pp 451–458

  30. Romeu P, Zamora-Martínez F, Botella-Rocamora P, Pardo J (2015) Stacked denoising auto-encoders for short-term time series forecasting. In: Artificial neural networks. Springer, Berlin, pp 463–486

  31. Fay D, Ringwood JV (2010) On the influence of weather forecast errors in short-term load forecasting models. IEEE Trans Power Syst 25:1751–1758. https://doi.org/10.1109/TPWRS.2009.2038704

    Article  Google Scholar 

  32. Taylor JW, Majithia S (2000) Using combined forecasts with changing weights for electricity demand profiling. J Oper Res Soc 51:72–82. https://doi.org/10.1057/palgrave.jors.2600856

    Article  MATH  Google Scholar 

  33. Hippert HS, Pedreira CE (2004) Estimating temperature profiles for short-term load forecasting: neural networks compared to linear models. IEE Proc Gener Transm Distrib 151:543–547. https://doi.org/10.1049/ip-gtd:20040491

    Article  Google Scholar 

  34. Tarek KM, Farouk B, Sofiane K (2010) Kohonen maps combined to K-means in a two level strategy for time series clustering application to meteorological and electricity load data. In: Matsopoulos GK (ed) Self-organizing maps. InTech, Croatia

    Google Scholar 

  35. Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28:129–137. https://doi.org/10.1109/TIT.1982.1056489

    Article  MathSciNet  MATH  Google Scholar 

  36. Benabbas F, Khadir MT (2011) Fuzzy C-means clustering and kohonen maps for the identification of regional electricity load day types. Int J Hybrid Intell Syst 8:81–92. https://doi.org/10.3233/HIS-2011-0124

    Article  Google Scholar 

  37. Linvill DE (1990) Calculating chilling hours and chill units from daily maximum and minimum temperature observations. HortScience 25:14–16

    Google Scholar 

  38. Spencer J (1971) Fourier series representation of the position of the sun. Search 2:172

    Google Scholar 

  39. Almorox J, Hontoria C, Benito M (2005) Statistical validation of daylength definitions for estimation of global solar radiation in Toledo, Spain. Energy Convers Manag 46:1465–1471. https://doi.org/10.1016/j.enconman.2004.07.007

    Article  Google Scholar 

  40. Han J, Moraga C (1995) The influence of the sigmoid function parameters on the speed of backpropagation learning. Nat Artif Neural Comput 195–201. https://doi.org/10.1007/3-540-59497-3175

  41. Nezzar RM, Farah N, Khadir MT, Chouireb L (2016) Mid-long term load forecasting using multi-model artificial neural networks. Int J Electr Eng Inf 8:389

    Google Scholar 

  42. Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527

    Article  MathSciNet  MATH  Google Scholar 

  43. Larochelle H, Erhan D, Courville A et al (2007) An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th international conference on machine learning. ACM, pp 473–480

  44. Bengio Y (2012) Practical recommendations for gradient-based training of deep architectures. In: Neural networks: tricks of the trade, 2nd edn. Springer, Berlin, pp 437–478

  45. Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22:679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001

    Article  Google Scholar 

  46. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305

    MathSciNet  MATH  Google Scholar 

  47. Pidwirny M (2006) Fundamentals of Physical Geography, 2nd edn. http://www.physicalgeography.net/fundamentals/contents.html. Accessed January 2017

  48. Farfar KE, Khadir MT, Laib O (2015) Comparison of serial and parallel approaches using artificial neural networks for Algerian short-term load. In: Third international conference on advances in computing, electronics and electrical technology. The Institute of Research Engineers and Doctors

Download references

Acknowledgements

We are grateful to Sonelgaz (Algeria’s national electricity and gas company) for providing 4 years of electricity data for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kheir Eddine Farfar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farfar, K.E., Khadir, M.T. A two-stage short-term load forecasting approach using temperature daily profiles estimation. Neural Comput & Applic 31, 3909–3919 (2019). https://doi.org/10.1007/s00521-017-3324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3324-x

Keywords

Navigation