Skip to main content
Log in

Automatic sleep stages classification based on iterative filtering of electroencephalogram signals

  • New Trends in data pre-processing methods for signal and image classification
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Computer-aided sleep monitoring system can effectively reduce the burden of experts in analyzing the large volume of electroencephalogram (EEG) recordings corresponding to sleep stages. In this paper, a new technique for automated classification of sleep stages based on iterative filtering of EEG signals is presented. In order to perform sleep stages classification, the EEG signals are decomposed using iterative filtering method. The modes obtained from iterative filtering of EEG signal can be considered as amplitude-modulated and frequency-modulated (AM-FM) components. The discrete energy separation algorithm (DESA) is applied to the modes to determine amplitude envelope and instantaneous frequency functions. The extracted amplitude envelope and instantaneous frequency functions have been used to compute Poincaré plot descriptors and statistical measures. The Poincaré plot descriptors and statistical measures are applied as input features for different classifiers in order to classify sleep stages. The classifiers namely, naïve Bayes, k-nearest neighbor, multilayer perceptron, C4.5 decision tree, and random forest are applied in order to classify the EEG epochs corresponding to various sleep stages. The experimental study has been performed on online available Sleep-EDF database for two-class to six-class classification of sleep stages based on EEG signals. The two-class to six-class classification problems are formulated by taking different combinations of EEG signals corresponding to various sleep stages. The comparison of the results is presented for different multi-class classification problems with the other recently proposed methods. The results show that the proposed method has provided better tenfold cross-validation classification accuracy than other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aboalayon KAI, Faezipour M, Almuhammadi WS, Moslehpour S (2016) Sleep stage classification using EEG signal analysis: a comprehensive survey and new investigation. Entropy 18(9):1–31

    Article  Google Scholar 

  2. Acharya UR, Faust O, Kannathal N, Chua T, Laxminarayan S (2005) Non-linear analysis of EEG signals at various sleep stages. Comput Methods Programs Biomed 80(1):37–45

    Article  Google Scholar 

  3. Acharya UR, Bhat S, Faust O, Adeli H, Chua ECP, Lim WJE, Koh JEW (2015) Nonlinear dynamics measures for automated EEG-based sleep stage detection. Eur Neurol 74:268–287

    Article  Google Scholar 

  4. Adeli H, Ghosh-Dastidar S, Dadmehr N (2007) A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans Biomed Eng 54(2):205–211

    Article  Google Scholar 

  5. Agarwal R, Gotman J (2001) Computer-assisted sleep staging. IEEE Trans Biomed Eng 48(12):1412–1423

    Article  Google Scholar 

  6. Agnew HW, Webb WB, Williams RL (1966) The first night effect: an EEG study of sleep. Psychophysiology 2(3):263–266

    Article  Google Scholar 

  7. Aha D, Kibler D (1991) Instance-based learning algorithms. Mach Learn 6:37–66

    MATH  Google Scholar 

  8. Azar AT, El-Said SA (2014) Performance analysis of support vector machines classifiers in breast cancer mammography recognition. Neural Comput Appl 24(5):1163–1177

    Article  Google Scholar 

  9. Bajaj V, Pachori RB (2013) Automatic classification of sleep stages based on the time-frequency image of EEG signals. Comput Methods Programs Biomed 112(3):320–328

    Article  Google Scholar 

  10. Berthomier C, Drouot X, Herman-Stoca M, Berthomier P, Prado J, Bokar-Thire D, Benoit O, Mattout J, d’Ortho MP (2007) Automatic analysis of single-channel sleep EEG: Validation in healthy individuals. Sleep 30(11):1587–1595

    Article  Google Scholar 

  11. Bouchikhi A, Boudraa AO (2012) Multicomponent AM-FM signals analysis based on EMD-B-splines ESA. Sig Process 92(9):2214–2228

    Article  Google Scholar 

  12. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  13. Brennan M, Palaniswami M, Kamen P (2001) Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 48(11):1342–1347

    Article  Google Scholar 

  14. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    MATH  Google Scholar 

  15. Cicone A, Liu J, Zhou H (2016) Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis. Appl Comput Harmonic Anal 41(2):384–411

    Article  MathSciNet  MATH  Google Scholar 

  16. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  17. Farid DM, Zhang L, Rahman CM, Hossain M, Strachan R (2014) Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks. Expert Syst Appl 41(4, Part 2):1937–1946

    Article  Google Scholar 

  18. Fraiwan L, Lweesy K, Khasawneh N, Wenz H, Dickhaus H (2012) Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Comput Methods Programs Biomed 108(1):10–19

    Article  Google Scholar 

  19. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220

    Article  Google Scholar 

  20. Güneş S, Polat K, Yosunkaya Şebnem (2010) Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting. Expert Syst Appl 37(12):7922–7928

    Article  Google Scholar 

  21. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. SIGKDD Explor 11(1):10–18

    Article  Google Scholar 

  22. Hassan AR, Bhuiyan MIH (2016a) A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features. J Neurosci Methods 271(15):107–118

    Article  Google Scholar 

  23. Hassan AR, Bhuiyan MIH (2016b) Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating. Biomed Signal Process Control 24:1–10

    Article  Google Scholar 

  24. Held CM, Heiss JE, Estevez PA, Perez CA, Garrido M, Algarin C, Peirano P (2006) Extracting fuzzy rules from polysomnographic recordings for infant sleep classification. IEEE Trans Biomed Eng 53(10):1954–1962

    Article  Google Scholar 

  25. Hsu YL, Yang YT, Wang JS, Hsu CY (2013) Automatic sleep stage recurrent neural classifier using energy features of EEG signals. Neurocomputing 104:105–114

    Article  Google Scholar 

  26. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A Math Phys Eng Sci 454(1971):903–995

    Article  MathSciNet  MATH  Google Scholar 

  27. Iber C, Ancoli-Israel S, Chesson A, Quan S (eds) (2007) The AASM manual for the scoring of sleep and associated events: rules. terminology and technical specifications. American Academy of Sleep Medicine, Westchester

  28. Imtiaz SA, Rodriguez-Villegas E (2014) A low computational cost algorithm for REM sleep detection using single channel EEG. Ann Biomed Eng 42(11):2344–2359

    Article  Google Scholar 

  29. Iranzo A, Santamaría J, Tolosa E (2009) The clinical and pathophysiological relevance of REM sleep behavior disorder in neurodegenerative diseases. Sleep Med Rev 13(6):385–401

    Article  Google Scholar 

  30. Iranzo A, Molinuevo JL, Santamaría J, Serradell M, Martí MJ, Valldeoriola F, Tolosa E (2006b) Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol 5(7):572–577

    Article  Google Scholar 

  31. John GH, Langley P (1995) Estimating continuous distributions in Bayesian classifiers. In: Eleventh conference on uncertainty in artificial intelligence. Morgan Kaufmann, San Mateo, pp 338–345

    Google Scholar 

  32. Kaiser JF (1990) On a simple algorithm to calculate the ‘energy’ of a signal. Int Conf Acoust Speech Signal Process 1:381–384

    Article  Google Scholar 

  33. Kaleem MF, Sugavaneswaran L, Guergachi A, Krishnan S (2010) Application of empirical mode decomposition and Teager energy operator to EEG signals for mental task classification. In: Annual international conference of the IEEE engineering in medicine and biology, pp 4590–4593

  34. Kayikcioglu T, Maleki M, Eroglu K (2015) Fast and accurate PLS-based classification of EEG sleep using single channel data. Expert Syst Appl 42(21):7825–7830

    Article  Google Scholar 

  35. Kelly JM, Strecker RE, Bianchi MT (2012) Recent developments in home sleep-monitoring devices. International Scholarly Research Notices, pp 1–10, article ID 768794

  36. Kemp B, Zwinderman AH, Tuk B, Kamphuisen HAC, Oberyé JJL (2000) Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Trans Biomed Eng 47(9):1185–1194

    Article  Google Scholar 

  37. Kirkwood BR, Sterne JA (2003) Essential medical statistics, 2nd edn. Blackwell, Oxford

  38. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on artificial intelligence, vol 2, pp 1137–1145

  39. Krakovská A, Mezeiová K (2011) Automatic sleep scoring: a search for an optimal combination of measures. Artif Intell Med 53(1):25–33

    Article  Google Scholar 

  40. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621

    Article  MATH  Google Scholar 

  41. Lan KC, Chang DW, Kuo CE, Wei MZ, Li YH, Shaw FZ, Liang SF (2015) Using off-the-shelf lossy compression for wireless home sleep staging. J Neurosci Methods 246:142–152

    Article  Google Scholar 

  42. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

    Article  MATH  Google Scholar 

  43. Liang SF, Kuo CE, Hu YH, Pan YH, Wang YH (2012) Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE Trans Instrum Meas 61(6):1649–1657

    Article  Google Scholar 

  44. Lin L, Wang Y, Zhou H (2009) Iterative filtering as an alternative algorithm for empirical mode decomposition. Adv Adapt Data Anal 01(04):543–560

    Article  MathSciNet  Google Scholar 

  45. Lippmann R (1987) An introduction to computing with neural nets. IEEE ASSP Mag 4(2):4–22

    Article  Google Scholar 

  46. Madyastha RK, Aazhang B (1994) An algorithm for training multilayer perceptrons for data classification and function interpolation. IEEE Trans Circuits Syst I Fundam Theory Appl 41(12):866–875

    Article  MATH  Google Scholar 

  47. Maragos P, Kaiser JF, Quatieri TF (1993) Energy separation in signal modulations with application to speech analysis. IEEE Trans Signal Process 41(10):3024–3051

    Article  MATH  Google Scholar 

  48. Motamedi-Fakhr S, Moshrefi-Torbati M, Hill M, Hill CM, White PR (2014) Signal processing techniques applied to human sleep EEG signals: a review. Biomed Signal Process Control 10:21–33

    Article  Google Scholar 

  49. Pachori RB (2008) Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res Let Signal Proc 2008:1–5

    Article  Google Scholar 

  50. Pachori RB, Gangashetty SV (2010a) AM-FM model based approach for detection of glottal closure instants. In: 10th international conference on information science, signal processing and their applications, pp 266–269

  51. Pachori RB, Gangashetty SV (2010b) Detection of voice onset time using FB expansion and AM-FM model. In: 10th international conference on information science, signal processing and their applications, pp 149–152

  52. Pachori RB, Sircar P (2008) EEG signal analysis using FB expansion and second-order linear TVAR process. Sig Process 88(2):415–420

    Article  MATH  Google Scholar 

  53. Pachori RB, Sircar P (2010) Analysis of multicomponent AM-FM signals using FB-DESA method. Digit Signal Proc 20(1):42–62

    Article  Google Scholar 

  54. Penzel T, Conradt R (2000) Computer based sleep recording and analysis. Sleep Med Rev 4(2):131–148

    Article  Google Scholar 

  55. Piskorski J, Guzik P (2007) Geometry of the Poincaré plot of RR intervals and its asymmetry in healthy adults. Physiol Meas 28(3):287–300

    Article  Google Scholar 

  56. Potamianos A, Maragos P (1994) A comparison of the energy operator and the Hilbert transform approach to signal and speech demodulation. Sig Process 37(1):95–120

    Article  MATH  Google Scholar 

  57. Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106

    Google Scholar 

  58. Rechtschaffen A, Kales A (eds) (1968) A manual of standardized terminology. Public Health Service, U.S. Government Printing Office, Washington, DC, Techniques and Scoring System for Sleep Stages of Human Subjects

  59. Ronzhina M, Janoušek O, Kolářová J, Nováková M, Honzík P, Provazník I (2012) Sleep scoring using artificial neural networks. Sleep Med Rev 16(3):251–263

    Article  Google Scholar 

  60. Ruggieri S (2002) Efficient C4.5. IEEE Trans Knowl Data Eng 14(2):438–444

    Article  Google Scholar 

  61. Sharmila V, Krishna EH, Reddy KA (2013) Cumulant based Teager energy operator for ECG signal modeling. In: International conference on advances in computing, communications and informatics, pp 1959–1963

  62. Sleep Technology: Technical Guideline (2012) Standard polysomnography. Technical report, American Association of Sleep Technologies. https://www.aastweb.org/technical-guidelines. Accessed 09 Jan 2017

  63. Spurrier JD (2003) On the null distribution of the Kruskal-Wallis statistic. J Nonparametr Stat 15(6):685–691

    Article  MathSciNet  MATH  Google Scholar 

  64. Tsinalis O, Matthews PM, Guo Y (2016) Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders. Ann Biomed Eng 44(5):1587–1597

    Article  Google Scholar 

  65. Villanueva J, Shaffer DR, Philip J, Chaparro CA, Erdjument-Bromage H, Olshen AB, Fleisher M, Lilja H, Brogi E, Boyd J, Sanchez-Carbayo M, Holland EC, Cordon-Cardo C, Scher HI, Tempst P (2006) Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Investig 116(1):271–284

    Article  Google Scholar 

  66. Šušmáková K, Krakovská A (2008) Discrimination ability of individual measures used in sleep stages classification. Artif Intell Med 44(3):261–277

    Article  Google Scholar 

  67. Wang Y, Wei GW, Yang S (2011) Iterative filtering decomposition based on local spectral evolution kernel. J Sci Comput 50(3):629–664

    Article  MathSciNet  Google Scholar 

  68. Wang Y, Wei GW, Yang S (2012) Mode decomposition evolution equations. J Sci Comput 50(3):495–518

    Article  MathSciNet  MATH  Google Scholar 

  69. Wilson DR, Martinez TR (2000) Reduction techniques for instance-based learning algorithms. Mach Learn 38(3):257–286

    Article  MATH  Google Scholar 

  70. Wu HT, Talmon R, Lo YL (2015) Assess sleep stage by modern signal processing techniques. IEEE Trans Biomed Eng 62(4):1159–1168

    Article  Google Scholar 

  71. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1(1):1–41

    Article  Google Scholar 

  72. Zhou G, Hansen JHL, Kaiser JF (2001) Nonlinear feature based classification of speech under stress. IEEE Trans Speech Audio Process 9(3):201–216

    Article  Google Scholar 

  73. Zhu G, Li Y, Wen P (2014) Analysis and classification of sleep stages based on difference visibility graph from a single-channel EEG signal. IEEE J Biomed Health Inform 18(6):1813–1821

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Sharma.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Pachori, R.B. & Upadhyay, A. Automatic sleep stages classification based on iterative filtering of electroencephalogram signals. Neural Comput & Applic 28, 2959–2978 (2017). https://doi.org/10.1007/s00521-017-2919-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-2919-6

Keywords

Navigation