Skip to main content
Log in

Effect of magnetic field on Cu–water nanofluid heat transfer using GMDH-type neural network

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Heat transfer of Cu–water nanofluid over a stretching cylinder in the presence of magnetic field has been investigated. The group method of data handling (GMDH) type neural networks (NNs) is used to calculate Nusselt number formulation. Results indicate that GMDH-type NN in comparison with fourth-order Runge–Kutta integration scheme provides an effective means of efficiently recognizing the patterns in data and accurately predicting a performance. The effects of nanoparticle volume fraction, magnetic parameter and Reynolds number on Nusselt number are studied by sensitivity analyses. The results show that Nusselt number is an increasing function of Reynolds number and volume fraction of nanoparticles while it is a decreasing function of magnetic parameter. As volume fraction of nanoparticles increases, the effect of this parameter on Nusselt number also increases, but opposite behavior is obtained for magnetic parameter and Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A 1, A 2, A 3, A 4 :

Constant parameters

a :

Radius of cylinder

a i :

Coefficients of the quadratic polynomial equation

c :

Positive constant

C f :

Skin friction coefficient

f :

Dimensionless stream function

k :

Thermal conductivity

M :

Magnetic parameter

MS:

Mean square error

MAD:

Mean absolute deviation

Nu :

Nusselt number

Pr :

Prandtl number

q w :

Heat transfer from the cylinder surface

Re :

Reynolds number

R 2 :

Absolute fraction of variance

T :

Temperature of the nanofluid

u, v :

Velocity components along the x and y directions, respectively

x, y :

Cartesian coordinates along x and y axes, respectively

α :

Thermal diffusivity

η :

Similarity variable

θ :

Similarity function for temperature

ρ :

Density

ϕ :

Nanoparticle volume fraction

μ :

Dynamic viscosity

υ :

Kinematic viscosity

τ w :

Wall shear stress

ψ :

Stream function

σ :

Electrical conductivity

w:

Condition at the surface

:

Far field

nf:

Nanofluid

f:

Base fluid

s:

Nano-solid-particles

References

  1. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transfer 46:3639–3653

    Article  MATH  Google Scholar 

  2. Sheikholeslami M, Ganji DD (2013) Heat transfer of Cu–water nanofluid flow between parallel plates. Powder Technol 235:873–879

    Article  Google Scholar 

  3. Ghasemi B, Aminossadati SM (2009) Natural convection heat transfer in an inclined enclosure filled with a water–CuO nanofluid. Numer Heat Transfer A Appl 55:807–823

    Article  Google Scholar 

  4. Soleimani S, Sheikholeslami M, Ganji DD, Gorji-Bandpay M (2012) Natural convection heat transfer in a nanofluid filled semi-annulus enclosure. Int Commun Heat Mass Transfer 39:565–574

    Article  Google Scholar 

  5. Sheikholeslami M, Ganji DD, Ashorynejad HR (2013) Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technol 239:259–265

    Article  Google Scholar 

  6. Sheikholeslami M, Ganji DD, Ashorynejad HR, Rokni HB (2012) Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by adomian decomposition method. Appl Math Mech Engl Ed 33(1):25–36

    Article  MATH  MathSciNet  Google Scholar 

  7. Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S Effect of a magnetic field on natural convection in an inclined half-annulus enclosure filled with Cu–water nanofluid using CVFEM. Adv Powder Technol. doi:10.1016/j.apt.2013.01.012

  8. Liron N, Wilhelm HE (1974) Integration of the magneto-hydrodynamic boundary layer equations by Meksyn’s method. J Appl Math Mech (ZAMM) 54:27–37

    Article  MATH  Google Scholar 

  9. Ashorynejad HR, Mohamad AA, Sheikholeslami M (2013) Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method. Int J Therm Sci 64:240–250

    Article  Google Scholar 

  10. Nariman-Zadeh N, Darvizeh A, Ahmad-Zadeh GR (2003) Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process. Proc IME B J Eng Manufact 217:779–790

    Article  Google Scholar 

  11. Ivakhnenko AG (1971) Polynomial theory of complex systems. IEEE Trans Syst Man Cybern 1:364–378

    Article  MathSciNet  Google Scholar 

  12. Farlow SJ (1984) Self-organizing method in modelling: GMDH type algorithm. Marcel Dekker Inc, New York

    Google Scholar 

  13. Mola-Abasi H, Eslami A, Tabatabaie Shourijeh P Shear wave velocity by polynomial neural networks and genetic algorithms based on geotechnical soil properties. Arab J Sci Eng. doi:10.1007/s13369-012-0525-6

  14. Abedimahzoon N, Molaabasi H, Lashtehneshaei M, Biklaryan M (2010) Investigation of undertow in reflective beaches using a GMDH-type neural network. Turkish J Eng Env Sci 34:201–213

    Google Scholar 

  15. Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S MHD natural convection in a nanofluid filled inclined enclosure with sinusoidal wall using CVFEM. Neural Comput Appl. doi:10.1007/s00521-012-1316-4

  16. Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S Natural convection heat transfer in a cavity with sinusoidal wall filled with CuO–water nanofluid in presence of magnetic field. J Taiwan Instit Chem Eng. doi:10.1016/j.jtice.2013.04.019

  17. Sheikholeslami M, Gorji-Bandpy M, Domairry G (2013) Free convection of nanofluid filled enclosure using lattice Boltzmann method (LBM). Appl Math Mech Engl Ed 34(7):1–15

    Article  Google Scholar 

  18. Ashorynejad HR, Sheikholeslami M, Pop I, Ganji DD (2013) Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field. Heat Mass Transfer 49:427–436

    Article  Google Scholar 

  19. Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S, Seyyedi SM (2012) Natural convection of nanofluids in an enclosure between a circular and a sinusoidal cylinder in the presence of magnetic field. Int Commun Heat Mass Transfer 39:1435–1443

    Article  Google Scholar 

  20. Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transfer 50:2002–2018

    Article  MATH  Google Scholar 

  21. Nariman-Zadeh N, Darvizeh A, Jamali A, Moeini A (2005) Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process. J Mater Process Technol 164–165:1561–1571

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Sheikholeslami or Houman B. Rokni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheikholeslami, M., Bani Sheykholeslami, F., Khoshhal, S. et al. Effect of magnetic field on Cu–water nanofluid heat transfer using GMDH-type neural network. Neural Comput & Applic 25, 171–178 (2014). https://doi.org/10.1007/s00521-013-1459-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1459-y

Keywords

Navigation