Skip to main content
Log in

n-Fold obstinate filters in BL-algebras

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduced the notion of n-fold obstinate filter in BL-algebras and we stated and proved some theorems, which determine the relationship between this notion and other types of n-fold filters in a BL-algebra. We proved that if F is a 1-fold obstinate filter, then A/F is a Boolean algebra. Several characterizations of n-fold fantastic filters are given, and we show that A is a n-fold fantastic BL-algebra if A is a MV-algebra (n ≥ 1) and A is a 1-fold positive implicative BL-algebra if A is a Boolean algebra. Finally, we construct some algorithms for studying the structure of the finite BL-algebras and n-fold filters in finite BL-algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agliano P, Montagna F (2003) Varieties of BL-algebras I: general properties. J Pure Appl Algebra 181:105–129

    Article  MathSciNet  MATH  Google Scholar 

  2. Agliano P, Ferreirim IMA, Montagna F (2007) Basic hoops, an algebraic study of continuous t-norms. Stud Logica 87:73–98

    Article  MathSciNet  MATH  Google Scholar 

  3. Blok WJ, van Alten CJ (2002) The finite embeddability property for residuated lattices, pocrims and BCK-algebras. Algebra Univ 48:253–271

    Article  MATH  Google Scholar 

  4. Borumand Saeid A, Motamed S (2009) Normal filters in BL-algebras. World Appl Sci J 7(special issue Appl. Math.):70–76

    Google Scholar 

  5. Borumand Saeid A, Motamed S. On obstinate filters in BL-algebras. Q Math (to appear)

  6. Borumand Saeid A, Motamed S (2009) Some results in BL-algebras. Math Logic Quat 55(6):649–658

    Article  MathSciNet  MATH  Google Scholar 

  7. Busneag D, Piciu D (2003) BL-algebra of fractions relative to an ∧-closed system. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, vol XI, fascicola 1, pp 39–48

  8. Busneag D, Piciu D (2003) On the lattice of deductive systems of a BL-algebra. Central Eur J Math 1(2):221–238

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciabattoni A, Esteva F, Godo L (2002) T-norm based logics with n-contraction. Neural Netw World 12:453–460

    Google Scholar 

  10. Cignoli R, Esteva F, Godo L, Torrens A (2000) Basic fuzzy logic is the logic of continuous t-norm and their residua. Soft Comput 4:106–112

    Article  Google Scholar 

  11. Di Nola A, Georgescu G, Iorgulescu A (2002) Pseudo BL-algebra: part I. Mult Val Logic 8(5–6):673–714

    MathSciNet  MATH  Google Scholar 

  12. Di Nola A, Leustean L (2003) Compact representations of BL-algebras. Arch Math Logic 42:737–761

    Article  MathSciNet  MATH  Google Scholar 

  13. Hajek P (1998) Metamathematics of fuzzy logic. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  14. Haveshki M, Eslami E (2008) n-fold filters in BL-algebras. Math Log Qurt 54(2):176–186

    Article  MathSciNet  MATH  Google Scholar 

  15. Haveshki M, Borumand Saeid A, Eslami E (2006) Some types of filters in BL-algebras. Soft Comput 10:657–664

    Article  MATH  Google Scholar 

  16. Horcik R, Noguera C, Petrik M (2007) On n-contractive fuzzy logics. Math Logic Q 53(3):268–288

    Article  MathSciNet  MATH  Google Scholar 

  17. Iorgulescu A (2004) Classes of BCK-algebra-part III. Preprint series of the Institute of Mathematics of the Romanian Academy, preprint nr 3/2004, pp 1–37

  18. Iorgulescu A (2008) On BCK-algebra-part I.b: an attempt to treat unitarily the algebras of logic. New algebras. J Univ Comput Sci 14(22):3686–3715

    MathSciNet  Google Scholar 

  19. Iseki K, Tanak S (1978) An introduction to the theory of BCK-algebras. Math Jap 23(1):1–26

    MATH  Google Scholar 

  20. Kondo M, Dudek Wieslaw A (2007) Filter theory of BL-algebras. Soft Comput 12:419–423

    Article  Google Scholar 

  21. Lele C, Hyland M. Folding theory for fantastic filters in BL-algebras (preprint)

  22. Turunen E (1999) BL-algebras of basic fuzzy logic. Mathware Soft Comput 6:49–61

    MathSciNet  MATH  Google Scholar 

  23. Mundici D (1986) MV-algebras are categorically equivalent to bounded commutative BCK-algebras. Math Jap 31(6):889–894

    MathSciNet  MATH  Google Scholar 

  24. Turunen E (2001) Boolean deductive systems of BL-algebras. Arch Math Logic 40:467–473

    Article  MathSciNet  MATH  Google Scholar 

  25. Turunen E (1999) Mathematics behind fuzzy logic. Physica-Verlag, Heidelberg

    MATH  Google Scholar 

  26. Turunen E, Sessa S (2001) Local BL-algebras. Int J Mult Valued Logic 6:229–249

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to the Editor in Chief Prof. John MacIntyre and referees for their comments and suggestions which improved the paper. This paper obtain from research project of first author that has been financially supported by the office of vice chancellor for research of Islamic Azad University Bandar abbas Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arsham Borumand Saeid.

Appendix

Appendix

1.1 Diagrams

In diagram (a), we show that the relations between n-fold obstinate filters and other n-fold filters in BL-algebras, also in diagram (b), we show that the relations between structure of BL-algebras and other algebraic structures, where I = Implicative, P.I. = Positive implicative, F = Fantastic.

figure g

1.2 Algorithms

In the following, we construct some algorithms for studying finite BL-algebras and (n-fold obstinate) filters in finite BL-algebras.

Algorithm for finite BL-algebras

Input (A: set; \(\wedge,\,\vee,\,\ast,\,\rightarrow\): binary operations; 0, 1: constants)

Output (“A is a BL-algebra or not”)

Begin

IfA = Ø then

go to (1.);

EndIf

If (A, ∧, ∨, 0, 1) is not a bounded lattice then

go to (1.);

EndIf

If\((A,\ast,1)\) is not an abelian monoid then

go to (1.);

EndIf

Stop:=false;

i := 1;

While\(i\leq \mid A\mid\)and not(stop) do

j := 1

While\(j\leq \mid A\mid\)and not(stop) do

If \(x_{i}\wedge y_{j}\neq x_{i}\ast (x_{i}\rightarrow y_{j})\) then

Stop:=true;

EndIf

If \((x_{i}\rightarrow y_{j})\vee (y_{j}\rightarrow x_{i})\neq 1\) then

Stop:=true;

EndIf

k := 1;

While\(k\leq \mid A\mid\)and not(stop) do

If \((x_{i}\ast y_{j}\leq z_{k})\) and

\(x_{i}>(y_{j}\rightarrow z_{k})\) then

Stop:=true;

EndIf

EndWhile

EndWhile

EndWhile

If Stop then

(1.) Output (“A is not a BL-algebra”)

Else

Output (“A is a BL-algebra”)

EndIf

End

Algorithm for filters in finite BL-algebras

Input (A: BL-algebra, F: subset of A);

Output (“F is a filter or not”)

Begin

IfF = Ø then

go to (1.);

EndIf

If \(1 \not\in F\) then

go to (1.);

EndIf

Stop:=false;

i := 1;

While\(i\leq \mid A\mid\)and not(stop) do

j := 1

While\(j\leq \mid A\mid\)and not(stop)do

If \((x_{i}\in F)\) and \((x_{i}\rightarrow y_{j}\in F)\)

then

If \(y_{j}\not\in F\) then

Stop:=true;

EndIf

EndIf

EndWhile

EndWhile

If Stop then

(1.) Output (“F is not a filter”)

Else

Output (“F is a filter”)

EndIf

End

Algorithm for n-fold obstinate filters in finite BL-algebras

Input (A: BL-algebra, F: filter of A,  x: element of A,  n: natural number);

Output (“F is a n-fold obstinate filter or not”)

Begin

IfF = Ø then

go to (1.)

EndIf

Stop:=false;

i := 1;

While\(i\leq \mid A\mid\)and not(stop) do

j := 1

While\(j\leq \mid A\mid\)and not(stop) do

If \((x_{i}\not\in F)\) and \((y_{j}\not\in F)\) then

If \((x^{n}_{i}\rightarrow y_{j})\not\in F\) or \((y^{n}_{j}\rightarrow x_{i})\not\in F\) then

Stop:=true;

EndIf

EndIf

EndWhile

EndWhile

If Stop then

(1.) Output (“F is not a n-fold obstinate filter”)

Else

Output (“F is a n-fold obstinate filter”)

EndIf

End

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motamed, S., Saeid, A.B. n-Fold obstinate filters in BL-algebras. Neural Comput & Applic 20, 461–472 (2011). https://doi.org/10.1007/s00521-011-0548-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0548-z

Keywords

Navigation