Skip to main content
Log in

Tactile sensor solution with MEMS pressure sensors in industrial robotics

Taktile Sensorik mit MEMS-basierten Drucksensoren für die Industrielle Robotik

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

Tactile sensing is essential for any haptic interaction of robots and robotic systems with their environments. Throughout this work we introduce a tactile sensing solution based on a MEMS pressure sensor consisting of an array of flexible sensor cells, which enables spatially resolving force and contact pressure measurements over a wide dynamic range at high resolution. A compelling feature of the developed sensor concept is its soft and “human-like” mechanical touch behavior, which can solve challenges regarding the handling of sensitive objects, human-like tactile perception in prosthetics, or human-robot interaction scenarios. The developed sensor solution is characterized and evaluated in a typical collaborative robot work scenario in the industry for the gripping and lifting of objects with a commercial industrial robot system.

Zusammenfassung

Herausfordernde Manipulationsaufgaben, wie zum Beispiel die Handhabung weicher oder deformierbarer Objekte oder Objekte mit hoher Formvielfalt durch Industrieroboter, profitieren von einer ergänzenden sensorischen (haptischen) Wahrnehmung. Im Zuge dieser Arbeit stellen wir eine innovative, auf MEMS-basierten Miniaturdrucksensoren beruhende, taktile Sensorlösung vor. Mit dem vorgestellten Sensorkonzept, welches flexible drucksensitive Sensorzellen in einer Sensormatrix kombiniert, wird eine örtlich auflösende Messung von Kontaktkräften und Druckverteilungen mit hoher Sensitivität und hohem Dynamikbereich ermöglicht. Eine besondere Eigenschaft der entwickelten Sensorlösung ist die weiche Kontaktqualität bei mechanischem Kontakt bzw. externer Krafteinwirkung. Diese ist dem „weichen“ Charakter der menschlichen Haut beim Berühren und Hantieren mit Objekten sehr ähnlich – ein Vorteil, der für das Hantieren mit sensitiven und fragilen Objekten oder für einen möglichst humanoiden Tast- und Greifsinn für Handprothesen oder für Mensch-Roboter-Interaktionen genutzt werden kann. Der vorliegende Beitrag evaluiert die entwickelte Sensorlösung im Detail und demonstriert deren Anwendung im Kontext einer Pick-and-Place-Anwendung für Industrierobotik.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Albert SG, Luber SM, Winkler B (2020) Chapter 47 – Pressure sensors. In: Tilli M, Paulasto-Krockel M, Petzold M, et al (eds) Handbook of Silicon Based MEMS Materials and Technologies (Third Edition). Micro and Nano Technologies, Elsevier, p 915–935

    Chapter  Google Scholar 

  2. Bayer IS (2022) MEMS-based tactile sensors: materials, processes and applications in robotics. Micromachines 13(12):2051

    Article  Google Scholar 

  3. Beckerle P, Kõiva R, Kirchner EA, et al (2018) Feel-good robotics: Requirements on touch for embodiment in assistive robotics. Frontiers in Neurorobotics 12:84

    Article  Google Scholar 

  4. Birglen L, Schlicht T (2018) A statistical review of industrial robotic grippers. Robotics and Computer-Integrated Manufacturing 49:88–97

    Article  Google Scholar 

  5. Chen FY (1982) Gripping mechanisms for industrial robots: an overview. Mechanism and Machine Theory 17(5):299–311

    Article  Google Scholar 

  6. Dahiya RS, Metta G, Valle M, et al (2010) Tactile sensing – from humans to humanoids. IEEE Transactions on Robotics 26(1):1–20

    Article  Google Scholar 

  7. De Clercq T, Sianov A, Crevecoeur G (2022) A soft barometric tactile sensor to simultaneously localize contact and estimate normal force with validation to detect slip in a robotic gripper. IEEE Robotics and Automation Letters 7(4):11,767–11,774

    Article  Google Scholar 

  8. Eaton WP, Smith JH (1997) Micromachined pressure sensors: review and recent developments. Smart Materials and Structures 6(5):530

    Article  Google Scholar 

  9. Fiorillo A, Critello DC, Pullano S (2018) Theory, technology and applications of piezoresistive sensors: a review. Sensors and Actuators A: Physical 281:156–175

    Article  Google Scholar 

  10. Grover A (2021) Learning to detect slip using barometric tactile sensors. Master’s Thesis, University of Toronto

    Google Scholar 

  11. Grover A, Nadeau P, Grebe C, et al (2022) Learning to detect slip with barometric tactile sensors and a temporal convolutional neural network. In: 2022 International Conference on Robotics and Automation (ICRA), pp 570–576

    Chapter  Google Scholar 

  12. Infineon Technologies AG (2019) DPS368 – Digital XENSIV™ barometric pressure sensor – datasheet v1.1. https://www.infineon.com/cms/en/product/sensor/pressure-sensors/pressure-sensors-for-iot/dps368/. Accessed 2023-05-08

    Google Scholar 

  13. Infineon Technologies AG (2023) XENSIV™ pressure sensors for IoT – Infineon Technologies. https://www.infineon.com/cms/en/product/sensor/pressure-sensors/pressure-sensors-for-iot/. Accessed 2023-05-08

    Google Scholar 

  14. Javed Y, Mansoor M, Shah IA (2019) A review of principles of MEMS pressure sensing with its aerospace applications. Sensor Review 39(5):652–664

    Article  Google Scholar 

  15. Kim G, Hwang D (2022) BaroTac: Barometric three-axis tactile sensor with slip detection capability. Sensors 23:428

    Article  Google Scholar 

  16. Li Q, Kroemer O, Su Z, et al (2020) A review of tactile information: perception and action through touch. IEEE Transactions on Robotics 36(6):1619–1634

    Article  Google Scholar 

  17. Nguyen TD, Lee JS (2022) Recent development of flexible tactile sensors and their applications. Sensors 22(1):50

    Article  Google Scholar 

  18. Peng Y, Yang N, Xu Q, et al (2021) Recent advances in flexible tactile sensors for intelligent systems. Sensors 21(16):5392

    Article  Google Scholar 

  19. Singh G, Banga VK (2022) Robots and its types for industrial applications. Materials Today: Proceedings 60:1779–1786

    Article  Google Scholar 

  20. Smith CS (1954) Piezoresistance effect in germanium and silicon. Physical Review 94(1):42–49

    Article  Google Scholar 

  21. Song P, Ma Z, Ma J, et al (2020) Recent progress of miniature MEMS pressure sensors. Micromachines 11(1):56 (38)

    Article  Google Scholar 

  22. Tenzer Y, Jentoft LP, Howe RD (2014) The feel of MEMS barometers: inexpensive and easily customized tactile array sensors. IEEE Robotics & Automation Magazine 21(3):89–95

    Article  Google Scholar 

  23. Tiwana MI, Redmond SJ, Lovell NH (2012) A review of tactile sensing technologies with applications in biomedical engineering. Sensors and Actuators A: Physical 179:17–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Thurner.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Thomas Thurner and Thomas Kammerhofer contributed equally to this work.

M. Hofbaur is an OVE member.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thurner, T., Kammerhofer, T., Reiterer, B. et al. Tactile sensor solution with MEMS pressure sensors in industrial robotics. Elektrotech. Inftech. 140, 541–550 (2023). https://doi.org/10.1007/s00502-023-01159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-023-01159-9

Keywords

Schlüsselwörter

Navigation