Skip to main content
Log in

Inference for multicomponent stress–strength reliability based on unit generalized Rayleigh distribution

  • Mathematical methods in data science
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper considers the problem of making inference for a multicomponent stress–strength (MSS) model under Type-II censoring. It is assumed that stress–strength components of the multicomponent system follow unit generalized Rayleigh (UGR) distributions. Inferences are derived when the strength and stress have a common unknown UGR parameters. We derive maximum likelihood estimator of MSS reliability based on observed censored data. In sequel, interval estimator is evaluated using delta method and asymptotic normality property. Pivotal quantities based inference upon MSS reliability are derived as well. In addition, we further consider the case when all the parameters of stress–strength model are unknown and obtain various inferences for the reliability. Equivalence of model parameters is considered based on likelihood ratio test. Assessment of different methods is evaluated from Monte Carlo simulations and remarks are presented for further discussion. Three numerical examples including a petroleum reservoirs data are analyzed for illustration purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data available on request.

References

  • Ahmad K, Fakhry M, Jaheen Z (1997) Empirical Bayes estimation of p(Y < X) and characterizations of burr-type x model. J Stat Plan Inference 64:297–308

    Article  MathSciNet  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identifications. IEEE Trans Autom Control 19:716–723

    Article  ADS  MathSciNet  Google Scholar 

  • Balakrishnan, N, Cramer, E (2014). The art of progressive censoring. In: Statistics for industry and technology. Birkhauser New York

  • Bhattacharyya G (1985) The asymptotic of maximum likelihood and related estimators based on Type II censored data. J Am Stat Assoc 80:398–404

    Article  MathSciNet  Google Scholar 

  • Bhattacharyya G, Johnson RA (1974) Estimation of reliability in a multicomponent stress-strength model. J Am Stat Assoc 69:966–970

    Article  MathSciNet  Google Scholar 

  • Birnbaum Z, McCarty R (1958) A distribution-free upper confidence bound for p(Y < X) based on independent samples of X and Y. Ann Math Stat 29(2):558–562

    Article  MathSciNet  Google Scholar 

  • Birnbaum ZW (1956, January). On a use of the Mann-Whitney statistic. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. University of California Press. 3: 13–18.

  • Casella G, Berger RL (2002) Statistical inference, volume 2. Duxbury Pacific Grove, CA

  • Constantine K, Tse SK, Karson M (1986) Estimation of p(y < x) in the gamma case. Commun Stat-Simul Comput 15:365–388

    Article  MathSciNet  Google Scholar 

  • Cox DR (1961) Tests of separate families of hypotheses. In: Proceedings of the Fourth Berkeley Symposium in Mathematical Statistics and Probability. University of California Press, Berkeley

  • Cook DO, Kieschnick R, McCullough BD (2008) Regression analysis of proportions in finance with self selection. J Empir Financ 15(5):860–867

    Article  Google Scholar 

  • Dey S, Moala FA (2019) Estimation of reliability of multicomponent stress -strength of a bathtub shape or increasing failure rate function. Int J Qual Reliab Manag 36(2):122–136

    Article  Google Scholar 

  • Dey S, Mazucheli J, Anis M (2017) Estimation of reliability of multicomponent stress-strength for a Kumaraswamy distribution. Commun Stat-Theory Methods 46:1560–1572

    Article  MathSciNet  Google Scholar 

  • Gao S, Yu J, Gui W (2020) Pivotal inference for the inverted exponentiated Rayleigh distribution based on progressive type-ii censored data. Am J Math Manag Sci 39(4):315–328

    Google Scholar 

  • Gómez-Déniz E, Sordo MA, Calderín-Ojeda E (2014) The Log-Lindley distribution as an alternative to the beta regression model with applications in insurance. Insur Math Econ 54:49–57

    Article  MathSciNet  Google Scholar 

  • Grassia A (1977) On a family of distributions with argument between 0 and 1 obtained by transformation of the gamma and derived compound distributions. Austral J Stat 19:108–114

    Article  MathSciNet  Google Scholar 

  • Gunasekera S (2015) Generalized inferences of p(Y < X) for pareto distribution. Stat Pap 56:333–351

    Article  MathSciNet  Google Scholar 

  • Jha MK, Dey S, Tripathi YM (2019) Reliability estimation in a multicomponent stress-strength based on unit-Gompertz distribution. Int J Qual Reliab Manag 37(3):428–450

    Article  Google Scholar 

  • Jha MK, Dey S, Alotaibi RM, Tripathi YM (2020) Reliability estimation of a multicomponent stress-strength model for unit Gompertz distribution under progressive type ii censoring. Qual Reliab Eng Int 36:965–987

    Article  Google Scholar 

  • Jia J, Yan Z, Song H, Chen Y (2023) Reliability estimation in multicomponent stress–strength model for generalized inverted exponential distribution. Soft Comput 27(2):903–916

    Article  Google Scholar 

  • Kayal T, Tripathi YM, Dey S, Wu SJ (2020) On estimating the reliability in a multi-component stress-strength model based on chen distribution. Commun Stat-Theory Methods 49:2429–2447

    Article  Google Scholar 

  • Khakifirooz M (2020) Model misspecification of generalized gamma distribution for accelerated lifetime-censored data. Technometrics 62(3):1–6

    Article  MathSciNet  Google Scholar 

  • Kizilaslan F (2017) Classical and bayesian estimation of reliability in a multicomponent stress-strength model based on the proportional reversed hazard rate mode. Math Comput Simul 136:36–42

    Article  MathSciNet  Google Scholar 

  • Kizilaslan F (2018) Classical and Bayesian estimation of reliability in a multi-component stress-strength model based on a general class of inverse exponentiated distributions. Stat Pap 59:1161–1192

    Article  MathSciNet  Google Scholar 

  • Kizilaslan F, Nadar M (2015) Classical and Bayesian estimation of reliability inmulticomponent stress-strength model based on Weibull distribution. Revista Colombiana De Estadstica 38:467–484

    Article  Google Scholar 

  • Kohansal A, Shoaee S (2021) Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data. Stat Pap 62(1):309–359

    Article  MathSciNet  Google Scholar 

  • Kotz S, Pensky M (2003) The stress-strength model and its generalizations: theory and applications. World Scientific

    Book  Google Scholar 

  • Kundu D, Gupta RD (2005) Estimation of p(Y < X) for generalized exponential distribution. Metrika 61:291–308

    Article  MathSciNet  Google Scholar 

  • Lawless JF (2003) Statistical models and methods for lifetime data. Wiley, New York

    Google Scholar 

  • Marcel Dekker, New York. Team RC (2017) R core team. R: A language and environment for statistical computing, R Found. Stat. Comput. Vienna, Austria. URL http://www.R-project. Accessed 1 Mar 2023

  • Mazucheli J, Menezes AF, Dey S (2019) Unit-gompertz distribution with applications. Statistica (bologna) 79:25–33

    Google Scholar 

  • Nadar M, Kiziaslan F (2015) Estimation of reliability in a multicomponent stress-strength model based on a Marshall-Olkin bivariate Weibull distribution. IEEE Trans Reliab 65:370–380

    Article  Google Scholar 

  • Papke LE, Wooldridge JM (1996) Econometric methods for fractional response variables with an application to 401 (k) plan participation rates. J Appl Economet 11(6):619–632

    Article  Google Scholar 

  • Pascual FG (2005) Maximum likelihood estimation under misspecified log-normal and Weibull distributions. Commun Stat-Simul Comput 34:503–524

    Article  Google Scholar 

  • Rao GS, Aslam M, Kundu D (2015) Burr-xii distribution parametric estimation and estimation of reliability of multi-component stress-strength. Commun Stat-Theory Methods 44:4953–4961

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  MathSciNet  Google Scholar 

  • Seo JI, Kang SB (2015) Pivotal inference for the scaled half logistic distribution based on progressively type-ii censored samples. Statist Probab Lett 104:109–116

    Article  MathSciNet  Google Scholar 

  • Singh K, Mahto AK, Tripathi YM, Wang L (2023) Estimation in a multicomponent stress-strength model for progressive censored lognormal distribution. Proc Inst Mech Eng Part O J Risk Reliab. https://doi.org/10.1177/1748006X231156841

    Article  Google Scholar 

  • Singh K, Mahto AK, Tripathi YM, Wang L (2024) Inference for reliability in a multicomponent stress-strength model for a unit inverse Weibull distribution under type-II censoring. Qual Technol Quant Manag 21(2): 147–176

    Article  Google Scholar 

  • Stephens M (1986) Tests for the exponential distribution. In Goodness-of-Fit Techniques. Eds. R.B. D'Agostinho, M.A. Stephens, pp 421-459, Marcel Dekker New York

  • Viveros R, Balakrishnan N (1994) Interval estimation of parameters of life from progressively censored data. Technometrics 36:84–91

    Article  MathSciNet  Google Scholar 

  • Wang L, Dey S, Tripathi YM, Wu SJ (2020) Reliability inference for a multicomponent stress-strength model based on Kumaraswamy distribution. J Comput Appl Math 376:112823

    Article  MathSciNet  Google Scholar 

  • Wang L, Wu K, Tripathi YM, Lodhi C (2022) Reliability analysis of multicomponent stress–strength reliability from a bathtub-shaped distribution. J Appl Stat 49(1):122–142

    Article  MathSciNet  PubMed  Google Scholar 

  • Weerahandi S (2004) Generalized inference in repeated measures: exact methods in MANOVA and mixed models, vol 500. Wiley, New York

    Google Scholar 

  • Xavier T, Jose JK (2020) A study of stress-strength reliability using a generalization of power transformed half-logistic distribution. Commun Stat-Theory Methods 50(18):4335–4351

    Article  MathSciNet  Google Scholar 

  • Xu J, Long JS (2005) Using the delta method to construct confidence intervals for predicted probabilities, rates, and discrete changes. In: Lecture Notes, Indiana University

Download references

Acknowledgements

The authors would like to thank the editor and the referees for their insightful comments that have led to a substantial improvement to an earlier version of the paper.

Funding

This work of Liang Wang was supported by the National Natural Science Foundation of China (No. 12061091), the Yunnan Fundamental Research Projects (No. 202101AT070103) Yunnan Key Laboratory of Modern Analytical Mathematics and Applications. The research work of Yogesh Mani Tripathi is partially financially supported under a grant MTR/2022/000183 by Science and Engineering Research Board, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Wang.

Ethics declarations

Conflict of interest

Authors do not have any financial relationship with an organization that sponsored the research and did not receive any compensation or consultancy work. There are not any potential conflicts of interests that are directly or indirectly related to the research.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent The manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A. Proof of Theorem 2

We recall that \({{{R}}}_{{{s}},{{k}}}\) is expressed as \({{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)\) as defined in (6). Also using Taylor’s theorem, \({{{R}}}_{{{s}},{{k}}}\left(\widehat{\upgamma }\right)\) written as (e.g., Xu and Long (2005))

$${{{R}}}_{{{s}},{{k}}}\left(\widehat{\upgamma }\right)={{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)+{\left[\nabla {{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)\right]}^{{{T}}}\left(\widehat{\upgamma }-\upgamma \right)+\frac{1}{2}{\left(\widehat{\upgamma }-\upgamma \right)}^{{{T}}}\left[{\nabla }^{2}{{{R}}}_{{{s}},{{k}}}\left({\upgamma }^{*}\right)\right]\left(\widehat{\upgamma }-\upgamma \right)$$
$$\approx {{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)+{\left[\nabla {{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)\right]}^{{{T}}}\left(\widehat{\upgamma }-\upgamma \right)$$
(25)

where \(\nabla {{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)\) and \({\nabla }^{2}{{{R}}}_{{{s}},{{k}}}\left({\upgamma }^{*}\right)\) denote respective matrices. Note also \({\upgamma }^{*}\) lies between \(\upgamma \) and \(\widehat{\upgamma }\). Then expression (25) turns out to be \({{{R}}}_{{{s}},{{k}}}\left(\widehat{\upgamma }\right)\to {{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)\) as \({{n}}\to \infty \) as Theorem 1 implies that \(\widehat{\upgamma }\to\upgamma \).

The variance of \({{{R}}}_{{{s}},{{k}}}\left(\widehat{\upgamma }\right)\) is given by

$${{Var}}\left({{{R}}}_{{{s}},{{k}}}\left(\widehat{\upgamma }\right)\right)\approx {{Var}}\left[{{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)+{\left[\nabla {{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)\right]}^{{{T}}}\widehat{\upgamma }-{\left[\nabla {{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)\right]}^{{{T}}}\upgamma \right]$$
$$={{Var}}\left[{\left[\nabla {{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)\right]}^{{{T}}}\widehat{\upgamma }\right]={\left[\nabla {{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)\right]}^{{{T}}}{{Var}}\left(\widehat{\upgamma }\right)\left[\nabla {{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)\right]$$

Therefore, we further get that

$${{{R}}}_{{{s}},{{k}}}\left(\widehat{\upgamma }\right)-{{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)\stackrel{{{d}}}{\to }{{N}}\left(0,{\left[\nabla {{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)\right]}^{{{T}}}{{Var}}\left(\widehat{\upgamma }\right)\left[\nabla {{{R}}}_{{{s}},{{k}}}\left(\upgamma \right)\right]\right)$$

This completes the proof.

Proof of Theorem 3

Given \({{i}}={1,2},\ldots,{{m}}\), let \({Z}_{i1},{Z}_{i2},\ldots,{Z}_{is}\) be order statistics from UGR distribution. So \({R}_{s,k}\left(\widehat{\eta }\right)-{{{R}}}_{{{s}},{{k}}}\left(\upeta \right)\approx {\left[\nabla {{{R}}}_{{{s}},{{k}}}\left(\upeta \right)\right]}^{{{T}}}{X}_{ij}=-{\vartheta }_{1}{{log}}\left(1-{B}_{ij}\right),j={1,2},\cdots s\) denote censored samples from standard exponential distribution. We have.

$$ \begin{gathered} L_{i1} = kX_{i1} ,\;L_{i2} = \left( {k - 1} \right)\left( {X_{i2} - X_{i1} } \right) \hfill \\ \ldots \hfill \\ L_{{i\left( {s - 1} \right)}} = \left( {k - s + 2} \right)\left( {X_{{i\left( {s - 1} \right)}} - X_{{i\left( {s - 2} \right)}} } \right), \hfill \\ L_{is} = \left( {k - s + 1} \right)\left( {X_{is} - X_{{i\left( {s - 1} \right)}} } \right), \hfill \\ \end{gathered} $$

Are independent and identically distributed as standard exponential distribution (see, e.g., Lawless (2003)).

Consider \({W}_{ij}=\sum_{r=1}^{j}{L}_{ir}={-\vartheta }_{1}\left\{\sum_{r=1}^{j}{{log}}\left(1-{B}_{ir}\right)+\left(k-j\right){{log}}\left(1-{B}_{ij}\right)\right\},\)

\(j={1,2},\ldots,\) s, and using Stephens (1986) and Viveros and Balakrishnan (1994), one further has that the quantities

$$ \begin{gathered} U_{i1} = \frac{{W_{i1} }}{{W_{is} }} = \frac{{\mathop \sum \nolimits_{r = 1}^{1} \log \left( {1 - B_{ir} } \right) + \left[ {k - 1} \right]\log \left( {1 - B_{i1} } \right)}}{{\mathop \sum \nolimits_{r = 1}^{s} \log \left( {1 - B_{ir} } \right) + \left[ {k - s} \right]\log \left( {1 - B_{is} } \right)}} \hfill \\ U_{i2} = \frac{{W_{i2} }}{{W_{is} }} = \frac{{\mathop \sum \nolimits_{r = 1}^{2} \log \left( {1 - B_{ir} } \right) + \left[ {k - 2} \right]\log \left( {1 - B_{i2} } \right)}}{{\mathop \sum \nolimits_{r = 1}^{s} \log \left( {1 - B_{ir} } \right) + \left[ {k - s} \right]\log \left( {1 - B_{is} } \right)}} \hfill \\ U_{{i\left( {s - 1} \right)}} = \frac{{W_{{i\left( {s - 1} \right)}} }}{{W_{is} }} = \frac{{\mathop \sum \nolimits_{r = 1}^{s - 1} \log \left( {1 - B_{ir} } \right) + \left[ {k - s + 1} \right]\log \left( {1 - B_{{i\left( {s - 1} \right)}} } \right)}}{{\mathop \sum \nolimits_{r = 1}^{s} \log \left( {1 - B_{ir} } \right) + \left[ {k - s} \right]\log \left( {1 - B_{is} } \right)}} \hfill \\ \end{gathered} $$

denote order statistics from \({{U}}\left({0,1}\right)\) distribution. Also \({U}_{i1}<{U}_{i2}<\cdots {U}_{i\left(s-1\right)}\) being independent with \({W}_{is}{=-\vartheta }_{1}\left[\sum_{r=1}^{s}{{log}}\left(1-{B}_{ir}\right)+\left[k-s\right]{{log}}\left(1-{B}_{is}\right)\right]\).

We have

$$ \begin{aligned} D_{i1} \left( \varepsilon \right) & = - 2\mathop \sum \limits_{j = 1}^{s - 1} \log \left( {U_{ij} } \right) \\ & = 2\mathop \sum \limits_{j = 1}^{s - 1} {{log}}\left[ {\frac{{\mathop \sum \nolimits_{r = 1}^{s} \log \left( {1 - B_{ir} } \right) + \left( {k - s} \right)\log \left( {1 - B_{is} } \right)}}{{\mathop \sum \nolimits_{r = 1}^{j} \log \left( {1 - B_{ir} } \right) + \left( {k - j} \right)\log \left( {1 - B_{ij} } \right)}}} \right], \\ \end{aligned} $$

is chi-square distributed with \(2\left({{s}}-1\right)\) degrees of freedom and is independent of

$${E}_{i1}\left({\vartheta }_{1},\varepsilon \right)=2{W}_{is}=-2\sum_{i=1}^{m}\left\{\sum_{r=1}^{s}{{log}}\left(1-{B}_{ir}\right)+\left(k-s\right){{log}}\left(1-{B}_{is}\right)\right\}$$

is \({\chi }^{2}\left(2s\right)\) random variable.

Thus from independence of \({D}_{i1}\left(\varepsilon \right),{D}_{i2}\left(\varepsilon \right),\ldots,{D}_{im}\left(\varepsilon \right)\), it is seen that

$$ \begin{gathered} D_{1}^{Z} \left( \varepsilon \right) = \mathop \sum \limits_{i = 1}^{m} D_{i1} \left( \varepsilon \right) \hfill \\ = 2\mathop \sum \limits_{i = 1}^{m} \mathop \sum \limits_{j = 1}^{s - 1} {{log}}\left[ {\frac{{\mathop \sum \nolimits_{r = 1}^{s} \log \left( {1 - B_{ir} } \right) + \left( {k - s} \right)\log \left( {1 - B_{is} } \right)}}{{\mathop \sum \nolimits_{r = 1}^{j} \log \left( {1 - B_{ir} } \right) + \left( {k - j} \right)\log \left( {1 - B_{ij} } \right)}}} \right] \hfill \\ \end{gathered} $$

is a \(\chi^{2} \left( {2m\left( {s - 1} \right)} \right)\) variable

$$ \begin{gathered} E_{1}^{Z} \left( {\vartheta_{1} ,\varepsilon } \right) = \mathop \sum \limits_{i = 1}^{m} E_{i1} \left( {\vartheta_{1} ,\varepsilon } \right) \hfill \\ = - 2\vartheta_{1} \mathop \sum \limits_{i = 1}^{m} \left\{ {\mathop \sum \limits_{r = 1}^{s} \log \left( {1 - B_{ir} } \right) + \left( {k - s} \right)\log \left( {1 - B_{is} } \right)} \right\} \hfill \\ \end{gathered} $$

follows \({\chi }^{2}\left(2ms\right)\) distribution, and \({D}_{1}^{Z}\left(\varepsilon \right)\) and \({E}_{1}^{Z}\left({\vartheta }_{1},\varepsilon \right)\) are statistical independent. Thus proof is completed.

Proof of Lemma 1

From the definition of \(R\left(h\right)\), it is noted that,\({{li}}{m}_{h\to 0}R\left(h\right)\) is zero upon zero form. We use \({{L}}\) Hospital's rule then.

$$\underset{h\to 0}{{{lim}}}R\left(h\right)=\frac{exp{\left[h{{log}}c\right]}^{2}}{exp{\left[h{{log}}d\right]}^{2}}\Rightarrow \underset{h\to 0}{{{lim}}}R\left(h\right)=1$$

For \(0<{{c}}<{{d}}<1\), since

$${{log}}\left(d\right)>{{log}}\left(c\right),\Rightarrow {\left(-{{log}}\left(c\right)\right)}^{2}>{\left(-{{log}}\left(d\right)\right)}^{2},\Rightarrow \underset{h\to \infty }{{{lim}}}R\left(h\right)=\infty $$

This completes the proof of first part. By computation, the limitation results can be obtained directly. Therefore, the assertion is completed.

Proof of Corollary 1

Considering \({D}_{1}^{Z}\) and \({D}_{1}^{T}\), for \(i={1,2},\ldots,{{m}}\) and \({{j}}={1,2},\ldots,{{s}}-1\) or\({{m}}-1\), we have

$$\frac{\sum_{r=1}^{s}\left({{log}}\left(1-{B}_{ir}\right)+\left(k-s\right){{log}}\left(1-{B}_{is}\right)\right)}{\sum_{r=1}^{j}\left({{log}}\left(1-{B}_{ir}\right)+\left(k-j\right){{log}}\left(1-{B}_{ij}\right)\right)}=$$
$$1+\frac{\sum_{r=j+1}^{s}\frac{\left({{log}}\left(1-{B}_{ir}\right)\right)}{\left({{log}}\left(1-{B}_{ij}\right)\right)}+\left(k-s\right)\frac{\left({{log}}\left(1-{B}_{is}\right)\right)}{\left({{log}}\left(1-{B}_{ij}\right)\right)}-\left(k-j\right)}{\sum_{r=1}^{j}\frac{\left({{log}}\left(1-{B}_{ir}\right)\right)}{\left({{log}}\left(1-{B}_{ij}\right)\right)}+\left(k-j\right)}$$

and

$$\frac{\sum_{r=1}^{m}\left({{log}}\left(1-{A}_{\left(r\right)}\right)\right)}{\sum_{r=1}^{j}\left({{log}}\left(1-{A}_{\left(r\right)}\right)\right)+\left(m-j\right)\left({{log}}\left(1-{A}_{\left(j\right)}\right)\right)}$$
$$=1+\frac{\sum_{r=j+1}^{m}\frac{\left({{log}}\left(1-{A}_{\left(r\right)}\right)\right)}{\left({{log}}\left(1-{A}_{\left(j\right)}\right)\right)}-\left(m-j\right)}{\sum_{r=1}^{j}\frac{\left({{log}}\left(1-{A}_{\left(r\right)}\right)\right)}{\left({{log}}\left(1-{A}_{\left(j\right)}\right)\right)}+\left(m-j\right)}$$

we see that numerators of above two terms increase in ε and denominators tend to decrease in ε. So \({D}_{1}^{Z}\left(\varepsilon \right)\) and \({D}_{1}^{T}\left(\varepsilon \right)\) are increasing function on \(\upvarepsilon \). We further have.

\(\underset{\varepsilon \to 0}{{{lim}}}{D}_{1}^{Z}\left(\varepsilon \right)=0,\underset{\varepsilon \to +\infty }{{{lim}}}{D}_{1}^{Z}\left(\varepsilon \right)=+\infty \),and \(\underset{\varepsilon \to 0}{{{lim}}}{D}_{1}^{T}\left(\varepsilon \right)=0,\underset{\varepsilon \to +\infty }{{{lim}}}{D}_{1}^{T}\left(\varepsilon \right)=+\infty \). Hence the result is shown.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, M.K., Singh, K., Dey, S. et al. Inference for multicomponent stress–strength reliability based on unit generalized Rayleigh distribution. Soft Comput 28, 3823–3846 (2024). https://doi.org/10.1007/s00500-023-09596-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-023-09596-6

Keywords

Navigation